Orotidine 5'-monophosphate decarboxylase has been heavily examined in recent years due to its enzymatic proficiency, which provides a catalytic enhancement to a reaction rate approximately 1017 times greater than that of the nonenzymatic reaction. Several mechanisms proposed to explain this catalytic enhancement have included covalent addition, ylide or carbene formation, and most recently concerted protonation. All of these mechanisms have circumvented the formation of a high-energy vinyl anionic intermediate. To investigate the presence of an anionic intermediate, 13C isotope effect studies have been performed using the alternate substrate 5-fluoro-OMP (OMP = orotidine 5'-monophosphate). Isotope effects obtained for the wild-type enzyme with OMP and 5-fluoro-OMP are 1.0255 and 1.0106, respectively, corresponding to a decrease of approximately 1.5% for 5-fluoro-OMP. With the K59A enzyme, the intrinisic isotope effects show a similar decrease of approximately 1.9% from 1.0543 with OMP to 1.0356 with 5-fluoro-OMP. This decrease results from the inductive effect of the fluorine, which stabilizes the carbanion intermediate by electron withdrawal and produces a reaction with an earlier transition state. The isotope effect for the decarboxylation of the slow substrate 2'-deoxy-OMP produced a intrinsic isotope effect of nearly 1.0461.
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu−/− mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu−/− mice were treated with 1–100 μg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 μg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu−/− mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu−/− mouse brain.
IntroductionGM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes β-galactosidase, a lysosomal hydrolase that removes β-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in β-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain β-linked galactose whose metabolites are substrates for β-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids.ObjectiveIn this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover.ResultsUsing tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well.ConclusionsOur studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many β-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all β-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies.
β-hexosaminidase is an enzyme responsible for the degradation of gangliosides, glycans, and other glycoconjugates containing β-linked hexosamines that enter the lysosome. GM2 gangliosidoses, such as Tay-Sachs and Sandhoff, are lysosomal storage disorders characterized by β-hexosaminidase deficiency and subsequent lysosomal accumulation of its substrate metabolites. These two diseases result in neurodegeneration and early mortality in children. A significant difference between these two disorders is the accumulation in Sandhoff disease of soluble oligosaccharide metabolites that derive from N- and O-linked glycans. In this paper we describe our results from a longitudinal biochemical study of a feline model of Sandhoff disease and an ovine model of Tay-Sachs disease to investigate the accumulation of GM2/GA2 gangliosides, a secondary biomarker for phospholipidosis, bis-(monoacylglycero)-phosphate, and soluble glycan metabolites in both tissue and fluid samples from both animal models. While both Sandhoff cats and Tay-Sachs sheep accumulated significant amounts of GM2 and GA2 gangliosides compared to age-matched unaffected controls, the Sandhoff cats having the more severe disease, accumulated larger amounts of gangliosides compared to Tay-Sachs sheep in their occipital lobes. For monitoring glycan metabolites, we developed a quantitative LC/MS assay for one of these free glycans in order to perform longitudinal analysis. The Sandhoff cats showed significant disease-related increases in this glycan in brain and in other matrices including urine which may provide a useful clinical tool for measuring disease severity and therapeutic efficacy. Finally, we observed age-dependent increasing accumulation for a number of analytes, especially in Sandhoff cats where glycosphingolipid, phospholipid, and glycan levels showed incremental increases at later time points without signs of peaking. This large animal natural history study for Sandhoff and Tay-Sachs is the first of its kind, providing insight into disease progression at the biochemical level. This report may help in the development and testing of new therapies to treat these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.