Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.
The amine−thiol solvent system has been used extensively to synthesize metal chalcogenide thin films and nanoparticles because of its ability to dissolve various metal and chalcogen precursors. While previous studies of this solvent system have focused on understanding the dissolution of metal precursors, here we provide an in-depth investigation of the dissolution of chalcogens, specifically Se and Te. Analytical techniques, including Raman, X-ray absorption, and NMR spectroscopy and highresolution tandem mass spectrometry, were used to identify pathways for Se and Te dissolution in butylamine−ethanethiol and ethylenediamine−ethanethiol solutions. Se in monoamine−monothiol solutions was found to form ionic polyselenides free of thiol ligands, while in diamine−monothiol solutions, thiol coordination with polyselenides was predominately observed. When the relative concentration of thiol is increased to that of Se, the chain length of polyselenide species was observed to shorten. Analysis of Te dissolution in diamine−thiol solutions also suggested the formation of relatively unstable thiol-coordinated Te ions. This instability of Te ions was found to be reduced by codissolving Te with Se in diamine−thiol solutions. Analysis of the codissolved solutions revealed the presence of atomic interaction between Se and Te through the identification of Se−Te bonds. This new understanding then provided a new route to dissolve otherwise insoluble Te in butylamine−ethanethiol solutions by taking advantage of the Se 2− nucleophile. Finally, the knowledge gained for chalcogen dissolutions in this solvent system allowed for controlled alloying of Se and Te in PbSe n Te 1−n material and also provided a general knob to alter various metal chalcogenide material syntheses.
Chemical characterization of complex mixtures of large saturated hydrocarbons is critically important for numerous fields, including petroleomics and renewable transportation fuels, but difficult to achieve. Atmospheric pressure chemical ionization (APCI) mass spectrometry has shown some promise in the analysis of saturated hydrocarbons. However, APCI causes extensive fragmentation to these compounds, which impedes its effectiveness. To prevent this fragmentation, its causes were examined via gas-phase ion−molecule reactions in vacuum in a linear quadrupole ion trap mass spectrometer. The results demonstrate that the mechanism proposed previously for ionization of saturated hydrocarbons upon APCI, hydride abstraction by carbocation reagent ions, is not correct. Instead, the fragmentation is caused by ionization of saturated hydrocarbons via exothermic proton-transfer reactions involving highly acidic, protonated atmospheric molecules, such as nitrogen and water. Accordingly, the extent of fragmentation was found to correlate with the proton affinities of the atmospheric molecules studied. Remarkably, controlled experiments involving isolated atmospheric ions and neat saturated hydrocarbons in vacuum yielded almost identical mass spectra as APCI involving atmospheric pressure conditions, the presence of many different chemicals, and an electrical discharge. In order to prevent or reduce the extent of fragmentation of saturated hydrocarbons upon APCI, and therefore enable accurate mass spectrometric characterization of complex mixtures of saturated hydrocarbons, the ion source should be purged of air to remove nitrogen and water and fill it with an inert gas with a substantially lower proton affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.