Summary1. An animal's perceptual range defines the spatial extent of the landscape for which information is available to make movement decisions. Ecologists studying and modelling animal dispersal have commonly assumed that individual movements arise from a predefined set of local decision rules operating within a static isotropic (i.e. circular) perceptual range. 2. We discuss how this assumption fails to recognize the potential for plasticity in perceptual ranges and present a conceptual model that illustrates how anisotropic perceptual ranges can arise from animal orientation to environmental stimuli. 3. Using model simulations we show how perceptual distance (i.e. greatest Euclidean distance at which habitat patches can be perceived), horizon (i.e. panoramic view or angular degrees of the landscape perceived) and breadth (i.e. areal extent of the landscape perceived), change as a function of increased strength of a hypothetical stimuli. 4. Our results show that anisotropic perceptual ranges can differ substantially from traditional, isotropic perceptual ranges in all three aspects depending on the strength of the stimuli and nature in which it interacts with other elements of the landscape. 5. We highlight the implications of these findings for modelling animal movements in ecological landscapes with the hope that context-dependent perceptual ranges are considered in future studies.
Our ability to perceive quality in nature begins, as in art, with the pretty. It expands through successive stages of the beautiful to values as yet uncaptured by language.
2006. Current velocity and habitat patchiness shape stream herbivore movement. Á Oikos 115: 358 Á368.
Understanding not just where organisms move but how they move is an important step towards integrating animal behaviour into landscape ecology. The three-dimensional landscape of a streambed provides an ideal setting for forging this integration because of the persuasive effects of flowing water. In this study, we experimentally examine the larval movement of the case-building caddisfly Agapetus boulderensis Milne, 1936 in response to two current velocities in each of five levels of contrasting habitat types (i.e., smooth patches that facilitate movement and thick algal patches that constrain movement). Detailed behavioural observations showed that larvae employed two distinctly different strategies of movement in different current velocities: faster crawling and slower pivoting. Our results suggest that individual decision-making between crawling and pivoting is related to the magnitude of current velocity across the streambed, and the frequency at which larvae employ these behaviours translates into differential movement rates and directions. Strong concordance between a conceptual model and our results supports the notion that the presence of structural "nonhabitat" patches at high current velocities may create areas of local flow interruption and refugia. This, in turn, plays an important role in eliciting either crawling or pivoting and in shaping patterns and directions of larval movement, and by extension resource acquisition.
We conducted streamside experiments to determine if the ability of herbivorous insects to remove algal periphyton varies with local current velocity. We used two mayfly species (Baetis bicaudatusand Drunella grandis) and one caddisfly species (Glossosoma verdona), which differ from one another in body morphology and mobility. Periphyton was grown for 30 days on ceramic tiles in constant velocity to create similar initial forage conditions for grazers. Tiles were transferred to three velocity regimes characteristic of the natural streambed: slow (3-5 cm s(-1)), medium (15-20 cm s(-1)) and fast (32-41 cm s(-1)). Four grazer treatments (Baetis, Drunella, and Glossosoma alone, and all species combined) were repeated for each velocity treatment to isolate the effect of local current on grazer ability to crop periphyton. Grazers differed in their abilities to remove periphyton across current treatments. Glossosoma removed significantly (P<0.05) more periphyton at fast versus either slow or medium velocities; Baetis showed a similar (but non-significant) trend; and, Drunella always removed about 75% of periphyton, irrespective of current. At fast current, periphyton removal was equivalent among the species. At medium current, Drunella removed significantly more than both Baetis and Glossosoma, whereas at slow current, Drunella removed more than Baetis, which removed more than Glossosoma. Periphyton removal under the combined three-grazer treatment was similar qualitatively to the combined effects of individual grazers. More periphyton tended to be removed as current increased, with the fast versus slow contrast showing marginal significance (P=0.10). Under all current regimes, the quantity of periphyton removed did not differ from the null model expectation of simple additive effects among individual grazers (i.e., no facilitation or inhibition). These experiments show that for some species, herbivory varies with current, which suggests that the herbivore "function" of cropping periphyton may vary with the environmental context of local current. Under some local velocities, however, different herbivore species "function" similarly and are potentially redundant with respect to periphytic removal. In naturally heterogeneous streams characterized by sharp gradients in local current velocity, we expect current-dependent species interactions to be common and at least partially contribute to intra-guild co-existence of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.