With the Industry 4.0 paradigm comes the convergence of the Internet Technologies and Operational Technologies, and concepts, such as Industrial Internet of Things (IIoT), cloud manufacturing, Cyber-Physical Systems (CPS), and so on. These concepts bring industries into the big data era and allow for them to have access to potentially useful information in order to optimise the Overall Equipment Effectiveness (OEE); however, most European industries still rely on the Computer-Integrated Manufacturing (CIM) model, where the production systems run as independent systems (i.e., without any communication with the upper levels). Those production systems are controlled by a Programmable Logic Controller, in which a static and rigid program is implemented. This program is static and rigid in a sense that the programmed routines cannot evolve over the time unless a human modifies it. However, to go further in terms of flexibility, we are convinced that it requires moving away from the aforementioned old-fashioned and rigid automation to a ML-based automation, i.e., where the control itself is based on the decisions that were taken by ML algorithms. In order to verify this, we applied a time series classification method on a scale model of a factory using real industrial controllers, and widened the variety of parts the production line has to treat. This study shows that satisfactory results can be obtained only at the expense of the human expertise (i.e., in the industrial process and in the ML process).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.