Individuals within groups of cooperatively breeding species may partition reproduction, with the dominant pair often taking the largest share. The dominant's ability to reproductively control subordinates may depend on differences in competitive ability, due to, e.g. body size differences, but may also depend on the number of same-sex competitors inside the group. We tested experimentally whether subordinates reproduce more when these subordinates are large or when a second subordinate of the same sex need to be controlled by the dominants, using the cooperatively breeding cichlid Neolamprologus pulcher. Dominant pairs were assisted by a large and a small unrelated subordinate; sexes of these fish were varied in a full-factorial design (giving four treatments). Dominant males lost significantly more parentage to the large subordinate male when a small subordinate male was also present, compared to when a small subordinate female was present. However, subordinate paternity was generally low and did not significantly curb total dominant male reproductive output, which was more affected by the sizes and numbers of reproductive females present inside his group. Dominant female maternity, clutch sizes and total output did not depend on the treatments. Subordinate-subordinate reproduction was virtually absent (one out of 874 offspring). Female subordinates were more likely to provide care for their own broods. In contrast, male subordinates did not adjust their level of care to their parentage. Variability in female subordinate alloparental brood care was particularly high, with females showing more care than males in general. We also detected effects of growth rate and food ration on parentage independent of the treatments, most notably: (i) a trade-off between dominant male growth rate and paternity; (ii) a decrease in dominant male paternity with increasing food ration; (iii) a positive effect of growth rate on paternity in small males. We conclude that dominant males should be sensitive to the number and sizes of subordinate males present in their group, particularly when these subordinates are not helpful or grow fast, and food is plentiful. Dominant females should be less sensitive, because female subordinates do not appear to impose reproductive costs and can be helpful through alloparental brood care.
BackgroundIn many cooperatively breeding vertebrates, subordinates assist a dominant pair to raise the dominants' offspring. Previously, it has been suggested that subordinates may help in payment for continued residency on the territory (the ‘pay-to-stay hypothesis’), but payment might also be reciprocated or might allow subordinates access to reproductive opportunities.Methodology/Principal FindingsWe measured dominant and subordinate female alloparental brood care and reproductive success in four separate experiments and show that unrelated female dominant and subordinate cichlid fish care for each other's broods (alloparental brood care), but that there is no evidence for reciprocal ‘altruism’ (no correlation between alloparental care received and given). Instead, subordinate females appear to pay with alloparental care for own direct reproduction.Conclusions/SignificanceOur results suggest subordinate females pay with alloparental care to ensure access to the breeding substrate and thereby increase their opportunities to lay their own clutches. Subordinates' eggs are laid, on average, five days after the dominant female has produced her first brood. We suggest that immediate reproductive benefits need to be considered in tests of the pay-to-stay hypothesis.
When social groups monopolize discrete habitat patches, group size may be positively correlated with patch size. The correlation can be a direct consequence of limited resources. Alternatively, it can be an indirect consequence of patch-size effects on a dominant group member. We asked which of these two mechanisms was responsible for a positive correlation between the group size of false clown anemonefish (Amphiprion ocellaris Cuvier in Cuvier and Valenciennes, 1830) and that of the host sea anemone Stichodactyla gigantea (Forskål, 1775). We argue that some false clown anemonefish groups may have reached the carrying capacities of their hosts, but that the group size : patch size correlation in the population as a whole is best interpreted as an indirect consequence of a positive relationship between anemone size and the length of the dominant group member. The dominant's length in turn limits group size because dominant group members inhibit the growth of their subordinates. Thus, a correlation between group size and patch size need not imply resource limitation of subordinate group members.
In cooperatively-breeding species, the sexes of subordinate group members may have important consequences for dominant individuals. We varied subordinates' sexes in aquariumhoused groups of the cooperatively-breeding cichlid fish Neolamprologus pulcher, and compared the behaviours of dominant individuals in groups with same-versus oppositesex subordinates. Dominants tended to be more aggressive towards same-sex subordinates, and dominant males directed more affiliative behaviour towards large female subordinates. These patterns suggest that mixed-sex groups can be viewed as separate male and female dominance hierarchies. Aggressive and affiliative interactions between dominant males and dominant females were more frequent when a large subordinate was female, which indicates that subordinates can be a source of conflict between the members of a breeding pair. Finally, subordinates' sexes affected dominants' locations within aquaria and the performance of territory maintenance behaviour by dominant females. In many cases, the effect of one subordinate's sex depended on a second subordinate's sex or on group members' absolute or relative body sizes. Therefore, predicting effects of subordinates' sexes in larger, more variable groups will be challenging. Our results are the first to experimentally demonstrate the importance of a group's gender composition for the behaviour of dominant individuals in a cooperatively-breeding species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.