Several recent studies link parental environments to phenotypes in subsequent generations. Here, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA levels in mature sperm, with decreased let-7 levels and increased levels of 5’ fragments of glycine tRNAs. tRNA fragments are scarce in testicular sperm, but are gained as sperm mature in the epididymis. Epididymosomes – vesicles that fuse with sperm during epididymal transit – carry RNA payloads matching those of mature sperm, and deliver RNAs to immature sperm in vitro. Functionally, tRNA-Gly-GCC fragments repress genes associated with the endogenous retroelement MERVL, both in ES cells and embryos. Our results shed light on small RNA biogenesis, and its dietary regulation, during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo.
SUMMARY
Epigenetic information can be inherited through the mammalian germline, and represents a plausible transgenerational carrier of environmental information. To test whether transgenerational inheritance of environmental information occurs in mammals, we carried out an expression profiling screen for genes in mice that responded to paternal diet. Offspring of males fed a low protein diet exhibited elevated hepatic expression of many genes involved in lipid and cholesterol biosynthesis, and decreased levels of cholesterol esters, relative to the offspring of males fed a control diet. Epigenomic profiling of offspring livers revealed numerous modest (~20%) changes in cytosine methylation depending on paternal diet, including reproducible changes in methylation over a likely enhancer for the key lipid regulator PPARα. These results, in conjunction with recent human epidemiological data, indicate that parental diet can affect cholesterol and lipid metabolism in offspring, and define a model system to study environmental reprogramming of the heritable epigenome.
Hematopoiesis is maintained by stem cells (HSCs) that undergo fate decisions by integrating intrinsic and extrinsic signals, with the latter derived from the bone marrow (BM) microenvironment. Cell-cycle regulation can modulate stem cell fate, but it is unknown whether this represents an intrinsic or extrinsic effector of fate decisions. We have investigated the role of the retinoblastoma protein (RB), a central regulator of the cell cycle, in hematopoiesis. Widespread inactivation of RB in the murine hematopoietic system resulted in profound myeloproliferation. HSCs were lost from the BM due to mobilization to extramedullary sites and differentiation. This phenotype was not intrinsic to HSCs, but, rather, was the consequence of an RB-dependent interaction between myeloid-derived cells and the microenvironment. These findings demonstrate that myeloproliferation may result from perturbed interactions between hematopoietic cells and the niche. Therefore, RB extrinsically regulates HSCs by maintaining the capacity of the BM to support normal hematopoiesis and HSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.