In cardiac amyloidosis (CA), amyloid infiltration results in increased left ventricular (LV) mass disproportionate to electrocardiographic (EKG) voltage. We assessed the relationship between LV mass–voltage ratio with subsequent heart failure hospitalization (HHF) and mortality in CA. Patients with confirmed CA and comprehensive cardiovascular magnetic resonance (CMR) and EKG exams were included. CMR-derived LV mass was indexed to body surface area. EKG voltage was assessed using Sokolow, Cornell, and Limb–voltage criteria. The optimal LV mass–voltage ratio for predicting outcomes was determined using receiver operating characteristic curve analysis. The relationship between LV mass–voltage ratio and HHF was assessed using Cox proportional hazards analysis adjusting for significant covariates. A total of 85 patients (mean 69 ± 11 years, 22% female) were included, 42 with transthyretin and 43 with light chain CA. At a median of 3.4-year follow-up, 49% of patients experienced HHF and 60% had died. In unadjusted analysis, Cornell LV mass–voltage ratio was significantly associated with HHF (HR, 1.05; 95% CI 1.02–1.09, p = 0.001) and mortality (HR, 1.05; 95% CI 1.02–1.07, p = 0.001). Using ROC curve analysis, the optimal cutoff value for Cornell LV mass–voltage ratio to predict HHF was 6.7 gm/m2/mV. After adjusting for age, NYHA class, BNP, ECV, and LVEF, a Cornell LV mass–voltage ratio > 6.7 gm/m2/mV was significantly associated with HHF (HR 2.25, 95% CI 1.09–4.61; p = 0.03) but not mortality. Indexed LV mass–voltage ratio is associated with subsequent HHF and may be a useful prognostic marker in cardiac amyloidosis.
Cardiac amyloidosis (CA) is an increasingly recognized cause of heart failure, arrhythmias, and sudden cardiac death. While CA was previously rapidly fatal, recent advances in diagnosis and treatment have significantly improved outcomes. Advances in cardiac imaging and biomarkers have critically improved the accuracy and efficiency with which CA is diagnosed, even allowing for the noninvasive diagnosis of transthyretin CA. Cardiac magnetic resonance imaging, technetium nuclear imaging, echocardiography, and blood‐based biomarkers have established important and complementary roles in the management and advancement of care. At the same time, the development of novel targeted amyloid therapies has allowed patients with CA to live longer and potentially achieve better quality of life. Still, despite this significant progress, there remain critical ongoing questions in the field. Accordingly, within this review we will highlight recent advances in cardiac imaging and therapeutics for CA, while focusing on key opportunities for further optimization of care and outcomes among this growing population. Specifically, we will discuss ongoing debates in the diagnosis of CA, including the interpretation of indeterminate cardiac imaging findings, the best technique to screen asymptomatic transthyretin amyloidosis gene mutation carriers for cardiac involvement, and the ideal method for monitoring response to CA treatment. We will additionally focus on recent advances in treatment for transthyretin amyloidosis‐CA, including a discussion of available agents as well as highlighting ongoing clinical trials. Together, these data will allow clinicians to emerge with a greater understanding of the present and future of diagnosis, management, and potentially enhanced outcomes in this rapidly advancing field.
ObjectivesWhile cardiac amyloidosis (CA) classically involves the left ventricle (LV), less is known about its impact on the right ventricle (RV) and pulmonary vasculature. We performed a retrospective analysis to identify the prevalence and types of pulmonary hypertension (PH) profiles in CA and to determine haemodynamic and cardiovascular magnetic resonance (CMR) predictors of major adverse cardiovascular events (MACE).MethodsPatients with CA who underwent CMR and right heart catheterisation (RHC) within 1 year between 2010 and 2019 were included. Patients were assigned the following haemodynamic profiles based on RHC: no PH, precapillary PH, isolated postcapillary PH (IPCPH), or combined precapillary and postcapillary PH (CPCPH). The relationship between PH profile and MACE (death, heart failure hospitalisation) was assessed using survival analysis. CMR and RV parameters were correlated with MACE using Cox-regression analysis.ResultsA total of 52 patients were included (age 69±9 years, 85% men). RHC was performed during biopsy in 44 (85%) and for clinical indications in 8 (15%) patients. Rates of no PH, precapillary PH, IPCPH and CPCPH were 5 (10%), 3 (6%), 29 (55%) and 15 (29%), respectively. Haemodynamic PH profile did not correlate with risk of death (p=0.98) or MACE (p=0.67). Transpulmonary gradient (TPG) (HR 0.88, CI 0.80 to 0.97), RV, (HR 0.95, CI 0.92 to 0.98) and LV ejection fraction (HR 0.95, CI 0.92 to 0.98) were significantly associated with MACE.ConclusionsPH is highly prevalent in CA, even at the time of diagnosis. While IPCPH was most common, CPCPH is not infrequent. TPG and RV ejection fraction (RVEF) are prognostic markers in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.