This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version.
Background Recent evidence shows an association between coronavirus disease 2019 (COVID-19) infection and a severe inflammatory syndrome in children. Cardiovascular magnetic resonance (CMR) data about myocardial injury in children are limited to small cohorts. The aim of this multicenter, international registry is to describe clinical and cardiac characteristics of multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 using CMR so as to better understand the real extent of myocardial damage in this vulnerable cohort. Methods and results Hundred-eleven patients meeting the World Health Organization criteria for MIS-C associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), having clinical cardiac involvement and having received CMR imaging scan were included from 17 centers. Median age at disease onset was 10.0 years (IQR 7.0–13.8). The majority of children had COVID-19 serology positive (98%) with 27% of children still having both, positive serology and polymerase chain reaction (PCR). CMR was performed at a median of 28 days (19–47) after onset of symptoms. Twenty out of 111 (18%) patients had CMR criteria for acute myocarditis (as defined by the Lake Louise Criteria) with 18/20 showing subepicardial late gadolinium enhancement (LGE). CMR myocarditis was significantly associated with New York Heart Association class IV (p = 0.005, OR 6.56 (95%-CI 1.87–23.00)) and the need for mechanical support (p = 0.039, OR 4.98 (95%-CI 1.18–21.02)). At discharge, 11/111 (10%) patients still had left ventricular systolic dysfunction. Conclusion No CMR evidence of myocardial damage was found in most of our MIS-C cohort. Nevertheless, acute myocarditis is a possible manifestation of MIS-C associated with SARS-CoV-2 with CMR evidence of myocardial necrosis in 18% of our cohort. CMR may be an important diagnostic tool to identify a subset of patients at risk for cardiac sequelae and more prone to myocardial damage. Clinical trial registration: The study has been registered on ClinicalTrials.gov, Identifier NCT04455347, registered on 01/07/2020, retrospectively registered.
Background Adults with obesity and type 2 diabetes mellitus (T2DM) related to obesity are at increased risk of heart failure with preserved ejection fraction (HFpEF). Whether left ventricular (LV) diastolic function abnormalities related to obesity and T2DM start in adolescence and early adulthood is unknown. We non-invasively evaluated the differences seen in LV diastolic and left atrial (LA) function in adolescents and young adults with obesity and T2DM. Methods We analyzed echocardiographic measures of LV diastolic function in patients with structurally normal hearts which were divided into 3 groups (normal weight, obese, and T2DM). Spectral and tissue Doppler and 2-D speckle tracking measurements of diastolic function were obtained. Logistic regression was performed to compare the prevalence of abnormalities in diastolic function based on the worst 25th percentile for each measure to determine the prevalence of diastolic and LA function abnormalities in obese and T2DM patients. Results 331 teenagers and young adults (median age 22.1 years) were analyzed (101 normal weight, 114 obese, 116 T2DM). Obese and T2DM group had lower E/A and higher E/e′. Obese and T2DM patients had significantly lower atrial reservoir, conduit, and booster strain and worse reservoir and conduit strain rate compared to normal patients (p < 0.001 for all measures). All patients had normal LA volumes. On multivariable analysis, conduit strain and reservoir and conduit strain rate were independently associated with having below the 25th percentile e′. Conduit strain rate was independently associated with having below the 25th percentile for mitral E/A ratio on multivariable analysis. Conclusions Abnormal indices of LV diastolic function are detected in adolescents and young adults with obesity and T2DM. LA function and strain analysis were able to detect evidence of decreased reservoir, conduit, and booster strain in these patients although LA volume was normal. The use of LA function strain may increase our ability to detect early diastolic function abnormalities in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.