Effective human/robot interfaces which mimic how humans interact with one another could ultimately lead to robots being accepted in a wider domain of applications. We present a framework for interactive task training of a mobile robot where the robot learns how to do various tasks while observing a human. In addition to observation, the robot listens to the human's speech and interprets the speech as behaviors that are required to be executed. This is especially important where individual steps of a given task may have contingencies that have to be dealt with depending on the situation. Finally, the context of the location where the task takes place and the people present factor heavily into the robot's interpretation of how to execute the task. In this paper, we describe the task training framework, describe how environmental context and communicative dialog with the human help the robot learn the task, and illustrate the utility of this approach with several experimental case studies.
Robot assistants need to interact with people in a natural way in order to be accepted into people's day-today lives. We have been researching robot assistants with capabilities that include visually tracking humans in the environment, identifying the context in which humans carry out their activities, understanding spoken language (with a fixed vocabulary), participating in spoken dialogs to resolve ambiguities, and learning task procedures. In this paper, we describe a robot task learning algorithm in which the human explicitly and interactively instructs a series of steps to the robot through spoken language. The training algorithm fuses the robot's perception of the human with the understood speech data, maps the spoken language to robotic actions, and follows the human to gather the action applicability state information. The robot represents the acquired task as a conditional procedure and engages the human in a spokenlanguage dialog to fill in information that the human may have omitted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.