The photochemistry of organophosphorus compounds and their reactions with carbon‐centred radicals was studied from the 1950s to the 70s, but has not been well exploited in synthetic chemistry until very recently. This review discusses the various modes of reactivity that phosphorus compounds display in radical C−C bond forming reactions, including the role of phosphonium salts as radical precursors, phosphines and phosphites as deoxygenating agents from oxygen‐centred radicals and phosphines in electron‐ and charge‐transfer chemistry. We also highlight the potential that these processes have in the future development of new reactions and cascade processes.
A phosphine‐catalyzed approach to pyrrolines has been developed that involves two mechanistically unlinked catalytic processes. The first involves the redox isomerization of amino crotonates to provide access to aliphatic tosyl imines, which then engage in a (3+2) annulation with various allenoates. The reaction shows generality, with 24 examples established, along with a low yielding and moderately enantioselective variant. Mechanistic studies indicate that the viability of the process is linked to the selection of catalysts with similar propensity to add to the two coupling partners.
Herein, we report an enantioselective catalytic annulation of electron-poor allenes with aminocrotonates. The reaction proceeds by the umpolung γ-amination of the allenoate and β-umpolung intramolecular conjugate addition. The reaction provides ready access to pyrrolidines using a homochiral phosphepine catalyst, which allows most products to form in good yields (55− 85%) with ≥95:5 er and ≥4:1 dr. An assisted tandem-catalytic variant is also viable, and mechanistic studies supporting the proposed reaction pathway are reported.
Conspectus Conjugate acceptors are one of the most common electrophilic functional groups in organic synthesis. While useful in a diverse range of transformations, their applications are largely dominated by the reactions from which their name is derived (i.e., as an acceptor of nucleophiles in the conjugate position). In 2014, we commenced studies focused on their ability to undergo polarity inversion through the conjugate addition of Lewis base catalysts. The first step in this process provides an enolate, from which the well-developed Rauhut–Currier (RC) and Morita–Baylis–Hillman (MBH) reactions can occur; however, tautomerization to provide a species in which the β-carbon of the conjugate acceptor can now act as a donor is also possible. When we commenced studies on this topic, reaction designs with this type of species, particularly when accessed using N-heterocyclic carbenes (NHCs), had been reported on only a handful of occasions. Despite a lack of development, conceptually it was felt that reactions taking advantage of polarity switching by Lewis base conjugate addition have a number of desirable features. Perhaps the most significant is the potential to reimagine a ubiquitous functional group as an entirely new synthon, namely, a donor to electrophiles from the conjugate position. Our work has focused on catalysis with both simple conjugate acceptors and also those embedded within more complicated substrates; the latter has allowed a series of cycloisomerizations and annulation reactions to be achieved. In most cases, the reactions have been possible using enantioenriched chiral NHCs or organophosphines as the Lewis base catalysts thereby delivering enantioselective approaches to novel cyclic molecules. While related chemistry can be accessed with either family of catalyst, in all cases reactions have been designed to take advantage of one or the other. In addition, a fine balance exists between reactions that exploit the initially formed enolate and those that involve the polarity-inverted β-anion. In our studies, this balance is addressed through substrate design, although catalyst control may also be possible. We consider the chemistry discussed in this Account to be in its infancy. Significant challenges remain to be addressed before our broad aim of discovering a universal approach to the polarity inversion of all conjugate acceptors can be achieved. These challenges broadly relate to chemoselectivity with substrates bearing multiple electrophilic functionalities, reliance upon the use of conjugate acceptors, and catalyst efficiency. To address these challenges, advances in catalyst design and catalyst cooperativity are likely required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.