Varietal data from 27 crop species from five continents were drawn together to determine overall trends in crop varietal diversity on farm. Measurements of richness, evenness, and divergence showed that considerable crop genetic diversity continues to be maintained on farm, in the form of traditional crop varieties. Major staples had higher richness and evenness than nonstaples. Variety richness for clonal species was much higher than that of other breeding systems. A close linear relationship between traditional variety richness and evenness (both transformed), empirically derived from data spanning a wide range of crops and countries, was found both at household and community levels. Fitting a neutral “function” to traditional variety diversity relationships, comparable to a species abundance distribution of “neutral ecology,” provided a benchmark to assess the standing diversity on farm. In some cases, high dominance occurred, with much of the variety richness held at low frequencies. This suggested that diversity may be maintained as an insurance to meet future environmental changes or social and economic needs. In other cases, a more even frequency distribution of varieties was found, possibly implying that farmers are selecting varieties to service a diversity of current needs and purposes. Divergence estimates, measured as the proportion of community evenness displayed among farmers, underscore the importance of a large number of small farms adopting distinctly diverse varietal strategies as a major force that maintains crop genetic diversity on farm.
An improved genetic linkage map has been constructed for cowpea (Vigna unguiculata L. Walp.) based on the segregation of various molecular markers and biological resistance traits in a population of 94 recombinant inbred lines (RILs) derived from the cross between 'IT84S-2049' and '524B'. A set of 242 molecular markers, mostly amplified fragment length polymorphism (AFLP), linked to 17 biological resistance traits, resistance genes, and resistance gene analogs (RGAs) were scored for segregation within the parental and recombinant inbred lines. These data were used in conjunction with the 181 random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP, and biochemical markers previously mapped to construct an integrated linkage map for cowpea. The new genetic map of cowpea consists of 11 linkage groups (LGs) spanning a total of 2670 cM, with an average distance of 6.43 cM between markers. Astonishingly, a large, contiguous portion of LG1 that had been undetected in previous mapping work was discovered. This region, spanning about 580 cM, is composed entirely of AFLP markers (54 in total). In addition to the construction of a new map, molecular markers associated with various biological resistance and (or) tolerance traits, resistance genes, and RGAs were also placed on the map, including markers for resistance to Striga gesnerioides races 1 and 3, CPMV, CPSMV, B1CMV, SBMV, Fusarium wilt, and root-knot nematodes. These markers will be useful for the development of tools for marker-assisted selection in cowpea breeding, as well as for subsequent map-based cloning of the various resistance genes.
Background Gene drive mosquitoes have been proposed as a possible means to reduce the transmission of malaria in Africa. Because this technology has no prior use-history at this time, environmental risk assessments for gene drive mosquitoes will benefit from problem formulation—an organized and ordered process to identify protection goals and potential pathways to harm to the environment, or animal or human health. Recognizing this need, the New Partnership for Africa’s Development (NEPAD), with support from African and international partners, organized four regional consultative workshops in Africa to initiate this process. Methods The workshops were attended by a diverse set of participants and stakeholders, including scientists, ethicists, health professionals, government regulators in the fields of environment health and biosafety as well government policymakers, who met for 4 days to deliberate on protection goals and pathways relevant to the use of gene drive mosquitoes for malaria control. The goal of the workshops was not to produce a comprehensive and detailed environmental risk assessment of gene drive mosquitoes, but rather to introduce problem formulation as a tool to the stakeholder community, and to serve as a starting point for conducting systematic environmental risk assessments in the future, identifying protection goals related to gene drive mosquitoes that are particular to African stakeholders. Results Participants in the workshops frequently identified human health and biodiversity as being relevant broad protection goals. Results of the deliberations provide insight into the concerns of African participants at an early stage in the development of gene drive organism/products that should be instructive to developers using this technology. Conclusions In general, the African participants of the consultations had a precautionary perspective with regard to environmental risk assessment of gene drive technology. As gene drive technology develops, protection goals will become further refined and candidate products will be further defined. These workshops represent only the beginning of a continuing process that will ultimately inform environmental risk assessment for gene drive mosquitoes to control malaria in Africa.
African countries face key challenges in the deployment of GM crops due to incongruities in the processes for effective and efficient commercial release while simultaneously ensuring food and environmental safety. Against the backdrop of the preceding scenario, and for the effective and efficient commercial release of GM crops for cultivation by farmers, while simultaneously ensuring food and environmental safety, there is a need for the close collaboration of and the interplay between the biosafety competent authorities and the variety release authorities. The commercial release of genetically modified (GM) crops for cultivation requires the approval of biosafety regulatory packages. The evaluation and approval of lead events fall under the jurisdiction of competent national authorities for biosafety (which may be ministries, autonomous authorities, or agencies). The evaluation of lead events fundamentally comprises a review of environmental, food, and feed safety data as provided for in the Biosafety Acts, implementing regulations, and, in some cases, the involvement of other relevant legal instruments. Although the lead GM event may be commercially released for farmers to cultivate, it is often introgressed into locally adapted and farmer preferred non-GM cultivars that are already released and grown by the farmers. The introduction of new biotechnology products to farmers is a process that includes comprehensive testing in the laboratory, greenhouse, and field over some time. The process provides answers to questions about the safety of the products before being introduced into the environment and marketplace. This is the first step in regulatory approvals. The output of the research and development phase of the product development cycle is the identification of a safe and best performing event for advancement to regulatory testing, likely commercialization, and general release. The process of the commercial release of new crop varieties in countries with established formal seed systems is guided by well-defined procedures and approval systems and regulated by the Seed Acts and implemented regulations. In countries with seed laws, no crop varieties are approved for commercial cultivation prior to the fulfillment of the national performance trials and the distinctness, uniformity, and stability tests, as well as prior to the approval by the National Variety Release Committee. This review outlines key challenges faced by African countries in the deployment of GM crops and cites lessons learned as well as best practices from countries that have successfully commercialized genetically engineered crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.