The first total synthesis of the C18-norditerpenoid aconitine alkaloid neofinaconitine and relay syntheses of neofinaconitine and 9-deoxylappaconitine from condelphine are reported. A modular, convergent synthetic approach involves initial Diels–Alder cycloaddition between two unstable components, cyclopropene 10 and cyclopentadiene 11. A second Diels–Alder reaction features the first use of an azepinone dienophile 8, with high diastereofacial selectivity achieved via rational design of the siloxydiene component 36 with a sterically-demanding bromine substituent. Subsequent Mannich-type N-acyliminium and radical cyclizations provide the complete hexacyclic skeleton 33 of the aconitine alkaloids. Key endgame transformations include installation of the C8-hydroxyl group via conjugate addition of water to a putative strained bridghead enone intermediate 45, and one-carbon oxidative truncation of the C4 sidechain to afford racemic neofinaconitine. Complete structural confirmation was provided by a concise relay synthesis of (+)-neofinaconitine and (+)-9-deoxylappaconitine from condelphine, with X-ray crystallographic analysis of the former clarifying the NMR spectral discrepancy between neofinaconitine and delphicrispuline, which were previously assigned identical structures.
Deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), and anhydroharringtonine (5) are reported to be among the most potent members of the antileukemia alkaloids isolated from the Cephalotaxus genus. Convergent syntheses of these four natural products are described, each involving novel synthetic methods and strategies. These syntheses enabled evaluation of several advanced natural and non-natural compounds against an array of human hematopoietic and solid tumor cells. Potent cytotoxicity was observed in several cell lines previously not challenged with these alkaloids. Variations in the structure of the ester chain within this family of alkaloids confer differing activity profiles against vincristine-resistant HL-60/RV+, signalling new avenues for molecular design of these natural products to combat multi-drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.