Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources.
High variability in the dentition of Homo can create uncertainties in the correct identification of isolated teeth. For instance, standard tooth identification criteria cannot determine with absolute certainty if an isolated tooth is a second or third maxillary molar. In this contribution, using occlusal fingerprint analysis, we reassess the identification of Krapina D58 (Homo neanderthalensis), which is catalogued as a third maxillary molar. We have hypothesized that the presence/absence of the distal occlusal wear facets can be used to differentiate second from third maxillary molars. The results obtained confirm our hypothesis, showing a significant difference between second and third maxillary molars. In particular we note the complete absence of Facets 7 and 10 in all third molars included in this analysis. The presence of these facets in Krapina D58 eliminates the possibility that it is a third maxillary molar. Consequently it should be reclassified as a second molar. Although this method is limited by the degree of dental wear (i.e., unworn teeth cannot be analyzed) and to individual molars in full occlusion, it can be used for tooth identification when other common criteria are not sufficient to discriminate between second and third maxillary molars.
Many types of behavioral and dietary information can be extracted from studies of tooth microwear. Some studies have even been successful at determining the overall directionality of microwear in order to establish gross masticatory movement (Williams et al., 2009, PNAS, 106, 11194-11199). However, microwear has never been successfully visualized in situ in 3 dimensions (3D), visualized virtually and quantified. The ability to accomplish this yields information on exact masticatory movement which can then be used to address any number of eco-biological and physiological questions in extant and extinct organisms. In order to create 3D virtual reality (VR) representation of microwear, fossil molars from the Javanese Sangiran 7 (S7) Homo erectus tooth collection and from historic hunter/gatherer meta-populations were imaged, the microwear in 3 dimensions was extracted, this information was then placed back on VR representations of the molars and quantified. The methodology contained herein demonstrates the efficacy and importance of such a technique in determining gross masticatory movement in fossil and recent hominin molars. This methodology could, in theory, be applied to any organism which produces microwear on its dentition. Applications in the fields of dentistry, orthodontics, climatology and dietary and habitat reconstructions can also be envisioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.