A simple benchtop method of fabricating glass-sealed nanometer-sized Au and Pt disk electrodes, glass nanopore electrodes, and glass nanopore membranes is reported. The synthesis of all three structures is initiated by sealing the tips of electrochemically sharpened Au and Pt microwires into glass membranes at the end of a soda lime or lead glass capillary. Pt and Au nanodisk electrodes are obtained by hand polishing using a high-input impedance metal oxide semiconductor field effect transistor (MOSFET)-based circuit to monitor the radius of the metal disk. Proper biasing of the MOSFET circuit, based on a numerical analysis of the polishing circuit impedance, allows for the reproducible fabrication of Pt disk electrodes of radii as small as 10 nm. Significantly smaller background currents in voltammetric measurements are obtained using lead glass capillaries, a consequence of the lower mobility of Pb(2+) (relative to Na(+)) in the glass matrix. Glass nanopore electrodes and glass nanopore membranes are fabricated, respectively, by removal of part or all of the metal sealed in the glass membranes. The nanostructures are characterized by atomic force microscopy, steady-state voltammetry, and ion conductivity measurements.
We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.