Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122,11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T c , huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T c of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families. 2 , to the ab-plane. 12 The temperature dependence is very different in the two directions, strongly departing from the WHH behaviour 16 mainly in the direction parallel to c. The anisotropy evaluated as γ = ab c ab c H H H ⊥ = 2 // 2 / γ, is also strongly temperature dependent, reminiscent of the two-gap behaviour seen in MgB 2 . 17,18 However, a different situation is observed in the 122 family. (Ba,K)Fe 2 As 2 single crystals exhibit nearly isotropic μ 0 H c2 with
The K- and Co-doped BaFe(2)As(2) (Ba-122) superconducting compounds are potentially useful for applications because they have upper critical fields (H(c2)) of well over 50 T, H(c2) anisotropy γ < 2and thin-film critical current densities J(c) exceeding 1 MA cm(-2) (refs 1-4) at 4.2 K. However, thin-film bicrystals of Co-doped Ba-122 clearly exhibit weak link behaviour for [001] tilt misorientations of more than about 5°, suggesting that textured substrates would be needed for applications, as in the cuprates. Here we present a contrary and very much more positive result in which untextured polycrystalline (Ba(0.6)K(0.4))Fe(2)As(2) bulks and round wires with high grain boundary density have transport critical current densities well over 0.1 MA cm(-2) (self-field, 4.2 K), more than 10 times higher than that of any other round untextured ferropnictide wire and 4-5 times higher than the best textured flat wire. The enhanced grain connectivity is ascribed to their much improved phase purity and to the enhanced vortex stiffness of this low-anisotropy compound (γ~1-2) when compared with YBa(2)Cu(3)O(7-x) (γ~5).
Abstract:We show that despite the low anisotropy, strong vortex pinning and high irreversibility field H irr close to the upper critical field H c2 of Ba(Fe 1-x Co x ) 2 As 2 , the critical current density J gb across [001] tilt grain boundaries (GBs) of thin film Ba(Fe 1-x Co x ) 2 As 2 bicrystals is strongly depressed, similar to high-T c cuprates. Our results suggest that weak-linked GBs are characteristic of both cuprates and pnictides because of competing orders, low carrier density, and unconventional pairing symmetry. PACS: 74.70.xa, 74.25.F-______________________________________ *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.