Fungi are an important and diverse component of soil communities, but these communities have proven difficult to study in conventional biotic surveys. We evaluated soil fungal diversity at two sites in a temperate forest using direct isolation of small-subunit and internal transcribed spacer (ITS) rRNA genes by PCR and high-throughput sequencing of cloned fragments. We identified 412 sequence types from 863 fungal ITS sequences, as well as 112 ITS sequences from other eukaryotic microorganisms. Equal proportions of Basidiomycota and Ascomycota sequences were present in both the ITS and small-subunit libraries, while members of other fungal phyla were recovered at much lower frequencies. Many sequences closely matched sequences from mycorrhizal, plant-pathogenic, and saprophytic fungi. Compositional differences were observed among samples from different soil depths, with mycorrhizal species predominating deeper in the soil profile and saprophytic species predominating in the litter layer. Richness was consistently lowest in the deepest soil horizon samples. Comparable levels of fungal richness have been observed following traditional specimenbased collecting and culturing surveys, but only after much more extensive sampling. The high rate at which new sequence types were recovered even after sampling 863 fungal ITS sequences and the dominance of fungi in our libraries relative to other eukaryotes suggest that the abundance and diversity of fungi in forest soils may be much higher than previously hypothesized.
The factors that influence a plant's ability to invade are not well understood. Many mechanisms are involved and the relative importance of different mechanisms depends on the specific invasion. Here we consider one factor-mycorrhizal symbioses. These symbioses are ubiquitous interactions involving the plants and soil fungi of most terrestrial ecosystems. We develop a conceptual framework for considering mycorrhizal symbioses in plant species invasions. The most critical aspects of this framework are: (a) the mycorrhizal status and (b) the growth response of the invading plant, (c) the ability of the plant to associate with different fungi, (d ) the quality of the plant as a host for local fungi and feedback dynamics, (e) the biogeography and dispersal of the fungi, ( g) the introduction and spread of the fungi, and ( g) the ecological consequences of the creation of novel mycorrhizas. These aspects can critically influence the trajectory of a plant invasion, and this symbiosis deserves more attention in plant invasion biology.
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
Ectomycorrhizal fungi (EMF), a phylogenetically and physiologically diverse guild, form symbiotic associations with many trees and greatly enhance their uptake of nutrients and water. Elevated CO2, which increases plant carbon supply and demand for mineral nutrients, may change the composition of the EMF community, possibly altering nutrient uptake and ultimately forest productivity. To assess CO2 effects on EMF communities, we sampled mycorrhizae from the FACTS-I (Forest-Atmosphere Carbon Transfer and Storage) research site in Duke Forest, Orange County, North Carolina, USA, where Pinus taeda forest plots are maintained at either ambient or elevated CO2 (200 ppm above ambient) concentrations. Mycorrhizae were identified by DNA sequence similarity of the internal transcribed spacer ribosomal RNA gene region. EMF richness was very high; 72 distinct phylotypes were detected from 411 mycorrhizal samples. Overall EMF richness and diversity were not affected by elevated CO2, but increased CO2 concentrations altered the relative abundances of particular EMF taxa colonizing fine roots, increased prevalence of unique EMF species, and led to greater EMF community dissimilarity among individual study plots. Natural variation among plots in mean potential net nitrogen (N) mineralization rates was a key determinant of EMF community structure; increasing net N mineralization rate was negatively correlated with EMF richness and had differential effects on the abundance of particular EMF taxa. Our results predict that, at CO2 concentrations comparable to that predicted for the year 2050, EMF community composition and structure will change, but diversity will be maintained. In contrast, high soil N concentrations can negatively affect EMF diversity; this underscores the importance of considering CO2 effects on forest ecosystems in the context of background soil chemical parameters and other environmental perturbations such as acid deposition or fertilizer runoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.