Rice orange leaf phytoplasma (ROLP) belongs to the “Candidatus Phytoplasma asteris” 16SrI-B subgroup, which is solely transmitted by the zigzag-striped leafhopper (Recilia dorsalis Motchulsky) and the green leafhopper (Nephotettix cincticeps Uhler) (Hemiptera: Cicadellidae). Recently, rice plants showing orange leaf discoloration have become ubiquitous in several paddies of two provinces in the Philippines. In total of 98 symptomatic rice plants, 82% (Laguna) and 95% (Mindanao) were ROLP-positive by nested PCR detection. These plants showed more varying symptoms than previously reported. The vector insect R. dorsalis was scarcely present but green paddy leafhopper, N. virescens Distant (Hemiptera: Cicadellidae), was commonly observed in the paddies, thus the ability of N. virescens to transmit ROLP was thoroughly investigated. Newly emerged adult N. virescens, which fed on ROLD-source rice plants, were used to inoculate a susceptible rice seedling and was serially transferred into a new healthy seedling. Resultant positive transmission rates varied from 5.1% to 17.8%. The transmission ability of the insects was generally decreased over time. These findings suggest that N. virescens is an alternative vector of ROLP in the Philippines. Altogether, this study highlighted the increasing importance of ROLD-reemergence in Southeast and East Asia and proved the need for careful management of this alternative vector insect.
Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.
Infection of viruses in plants often modifies plant responses to biotic and abiotic stresses. In the present study we examined the effects of Rice tungro spherical virus (RTSV) infection on drought response in rice. RTSV infection delayed the onset of leaf rolling by 1–2 days. During the delay in drought response, plants infected with RTSV showed higher stomatal conductance and less negative leaf water potential under drought than those of uninfected plants, indicating that RTSV-infected leaves were more hydrated. Other growth and physiological traits of plants under drought were not altered by infection with RTSV. An expression analysis of genes for drought response-related transcription factors showed that the expression of OsNAC6 and OsDREB2a was less activated by drought in RTSV-infected plants than in uninfected plants, further suggesting improved water status of the plants due to RTSV infection. RTSV accumulated more in plants under drought than in well-watered plants, indicating the increased susceptibility of rice plants to RTSV infection by drought. Collectively, these results indicated that infection with RTSV can transiently mitigate the influence of drought stress on rice plants by increasing leaf hydration, while drought increased the susceptibility of rice plants to RTSV.
Dietary iron (Fe) deficiency affects 14% of the world population with significant health impacts. Biofortification is the process of increasing the density of vitamins and minerals in a crop, through conventional breeding, biotechnology approaches, or agronomic practices. This process has recently been shown to successfully alleviate micronutrient deficiency for populations with limited access to diverse diets in several countries (https://www.harvestplus.org/). The Fe breeding target in the HarvestPlus program was set based on average rice consumption to fulfil 30% of the Estimated Average Requirement of Fe in women and children. In this review, we present the reported transgenic approaches to increase grain Fe. Insertion of a single or multiple genes encoding iron storage protein, metal transporter, or enzyme involved in the biosynthesis of metal chelator in the rice genome was shown to be a viable approach to significantly increase grain-Fe density. The most successful approach to reach the Fe breeding target was by overexpression of multiple genes. Despite this success, a significant effort of 8–10 years needs to be dedicated from the proof of concept to varietal release. This includes large-scale plant transformation, event selection, collection of data for premarket safety assurance, securing biosafety permits for consumption and propagation, and collection of data for variety registration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.