Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total global enzymes sale. According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classified in enzymes of class 3, the hydrolases, and the subclass 3.4, the peptide hydrolases or peptidase. Proteases are generally grouped into two main classes based on their site of action, that is, exopeptidases and endopeptidases. Protease has also been grouped into four classes based on their catalytic action: aspartic, cysteine, metallo, and serine proteases. However, lately, three new systems have been defined: the threonine-based proteasome system, the glutamate-glutamine system of eqolisin, and the serine-glutamate-aspartate system of sedolisin. Aspartic proteases (EC 3.4.23) are peptidases that display various activities and specificities. It has two aspartic acid residues (Asp32 and Asp215) within their active site which are useful for their catalytic activity. Most of the aspartic proteases display best enzyme activity at low pH (pH 3 to 4) and have isoelectric points in the pH range of 3 to 4.5. They are inhibited by pepstatin. The failure of the plant and animal proteases to meet the present global enzyme demand has directed to an increasing interest in microbial proteases. Microbial proteases are preferred over plant protease because they have most of the characteristics required for their biotechnological applications. Aspartic proteases are found in molds and yeasts but rarely in bacteria. Aspartic protease enzymes from microbial sources are mainly categorized into two groups: (i) the pepsin-like enzymes produced by Aspergillus, Penicillium, Rhizopus, and Neurospora and (ii) the rennin-like enzymes produced by Endothia and Mucor spp., such as Mucor miehei, M. pusillus, and Endothia parasitica. Aspartic proteases of microbial origin have a wide range of application in food and beverage industries. These include as milk-clotting enzyme for cheese manufacturing, degradation of protein turbidity complex in fruit juices and alcoholic liquors, and modifying wheat gluten in bread by proteolysis.
Food-borne pathogens are the primary source of infection in developing countries. The widespread practice of raw beef consumption was a potential cause of food-borne diseases in Ethiopia. Hence, this study was initiated to assess the microbiological quality of fresh meat samples from butcher shops in Debre Berhan. Fresh meat samples and swab samples from contact surfaces were collected from butcher shops for microbial analysis, following standard methods. The study revealed that the mean microbial counts of morning samples for total aerobic mesophilic, Staphylococci, Enterobacteriaceae, total coliform, fecal coliform, aerobic spore formers, and yeasts and molds of the butcher shops were 5.31, 4.24, 4.47, 4.79, 4.74, 3.77, and 5.0 log cfu/g, respectively. The mean microbial counts from the afternoon sample for total aerobic mesophilic, Staphylococci, Enterobacteriaceae, total coliform, fecal coliform, aerobic spore formers, and yeasts and molds of the butcher shops were 5.47, 4.78, 4.84, 4.88, 4.94, 5.15, and 5.07 log cfu/g, respectively. A higher microbial load was found from the meat sample collected in the afternoon. The mean microbial counts of total aerobic mesophilic, Staphylococci, Enterobacteriaceae, total coliform, fecal coliform, aerobic spore formers, and yeasts and molds from swabs of the contact surface were 4.17, 3.98, 4.08, 3.96, 3.86, 3.80, and 3.92 log cfu/cm2, respectively. Further characterization of the aerobic mesophilic flora indicated a dominance by Enterobacteriaceae (36%) followed by Staphylococci spp. (24%) and Bacillus spp. (19%). The prevalence of S. aureus, E. coli, and Salmonella in meat and swab samples was 37.5%, 32.5%, and 7.5%, respectively. In this study, it was observed that all samples collected from butcher shops detected a significant count of spoilage microbes. Hence, adequate sanitary measures should be taken from production to consumption stages.
This study reports the optimization of milk-clotting protease production from Aspergillus oryzae DRDFS13 under solid-state fermentation (SSF) in both one-variable-at-a-time and response surface methodology (RSM). The production and optimization of milk-clotting protease obtained from Aspergillus oryzae DRDFS13 under solid-state fermentation (SSF) using different agroindustrial wastes as solid substrates were studied. The agro-industrial wastes used included wheat bran, rice bran, pea bran, and grass pea bran. The chemical composition of the best solid substrate was tested using standard methods. Others cultivation parameters were studied, and the results showed that the optimum fermentation medium composed of wheat bran, casein (1% w/w), and glucose (0.5% w/w) and the conditions for maximum milk-clotting protease production were at the moisture content of 55.0%, inoculum of 0.5*10 6 spores/mL, incubation temperature of 30°C, pH of 6.0, and fermentation time of 5 days. The highest milk-clotting activity was obtained from the crude enzyme extracted using 0.1 M NaCl and partial purification of the crude enzyme using chilled acetone, and 80% (NH 4) 2 SO 4 increased the ratio of MCA/PA from 0.56 to 1.30 and 0.65, respectively. Moreover, the highest MCA (137.58 U/mL) was obtained at a casein concentration of 0.5%, pH 4.0, and 25°C, using RSM. Thus, results from the present study showed that the optimization of milk-clotting protease production from A. oryzae DRDFS 13 under SSF by both one-variable-at-a-time and RSM significantly increased the milk-clotting activity. This is the first report from a fungus in the Ethiopian setting and a modest contribution to highlight the potential of harnessing microbial protease enzymes for industrial applications.
This study aimed to investigate the efficiency, biochemical composition, and sensory quality of Danbo cheese produced using proteases derived from the fungus and bacterium compared to the commercial product. A fungal enzyme from Aspergillus oryzae DRDFS13MN726447 and a bacterial enzyme from Bacillus subtilis SMDFS 2B MN715837 were produced by solid-state and submerged fermentation, respectively. The crude enzyme from A. oryzae DRDFS13 and B. subtilis SMDFS 2B was partially purified by dialysis and used for Danbo cheese production using commercial rennet (CHY-MAX® Powder Extract NB, Christian Hansen, 2235 IMCU/g) as a control. The Danbo cheese produced using dialyzed fungal enzyme (E1) (267 U/mL), dialyzed bacterial enzyme (E2) (522 U/mL), and commercial rennet (C) were analyzed for body property, organoleptic characteristics, and proximate and mineral composition when fresh and after 2 months of ripening. There was no significant difference in the cheese yield (C = 9 kg, E1 = 8.6 kg, and E2 = 8.9 kg) among the three treatments. The body properties of Danbo cheese produced with the fungal enzyme (E1) were firm and acceptable as the control (C), whereas the Danbo cheese produced by bacterial enzymes has shown a watery body. The overall organoleptic characteristics of Danbo cheese produced by the fungal enzyme (5.3) were similar to control cheese produced by commercial rennet (5.5). Both cheese types were significantly different in organoleptic properties from Danbo cheese produced by the bacterial enzyme (4.9). There was no significant difference (p>0.05) in the proximate composition between the ripened Danbo cheese produced by fungal enzyme and the control cheese except for crude protein content. However, the ripened cheese products showed a significant difference in their mineral composition except for sodium. In conclusion, this study demonstrated that the fungal enzyme from Aspergillus oryzae DRDFS 13 is more appropriate for Danbo cheese production than the bacterial enzyme from Bacillus subtilis SMDFS 2B. However, it requires further application of the enzymes for the production of other cheese varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.