Scanning tunneling microscopy and atomic force microscopy can provide detailed information about the geometric and electronic structure of molecules with submolecular spatial resolution. However, an essential capability to realize the full potential of these techniques for chemical applications is missing from the scanning probe toolbox: chemical recognition of organic molecules. Here, we show that maps of the minima of frequency shift-distance curves extracted from 3D data cubes contain characteristic contrast. A detailed theoretical analysis based on density functional theory and molecular mechanics shows that these features are characteristic for the investigated species. Structurally similar but chemically distinct molecules yield significantly different features. We find that the van der Waals and Pauli interaction, together with the specific adsorption geometry of a given molecule on the surface, accounts for the observed contrast.
A micro‐spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4‐(4‐diethylaminostyryl)‐1‐methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM‐5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization‐dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture‐dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X‐ray diffraction.
To construct an efficient dye‐sensitized photo‐electrochemical tandem cell for hydrogen production, it is crucial to understand the working principles of both the photoanode and the photocathode. Herein, the anchoring of a proton‐reduction catalyst and an organic dye molecule on metal oxides is studied for the preparation of a photocathode. On TiO2, the Ni catalyst behaves as a good electrocatalyst (−250 μA cm−2) in acidic water (pH 2). The Ni catalyst and the organic dye were co‐immobilized on NiO to form a solely Ni‐based photocathode. The electron‐transfer steps were investigated by using various techniques (IR, UV/Vis, and fluorescence spectroscopy, and (photo)electrochemistry). Despite the observed successful single‐electron‐transfer steps between all of the components, photocatalysis did not yield any hydrogen gas. Possible bottlenecks that prevent photocatalytic proton reduction are poor electron transfer because of aggregation, charge recombination from the catalyst to the NiO, or instability of the catalyst after the first reduction.
In search of supramolecular antenna systems for light-harvesting applications, we report on a short and effective synthesis of a fused NDI-zinc-salphen-based chromophore (salphen = bis-salicylimide phenylene) and its photophysical properties. A supramolecular recognition motif is embedded into the chromophoric π-system of this compound. The fused π-chromophore behaves as one pigment, absorbs light between 600 and 750 nm and displays a modest Stokes shift. Upon binding pyridines, the compound (DATZnS) does not change its redox potentials, does not undergo any internal excited state quenching and does not appreciably alter its excited state lifetime. These notable properties define DATZnS as an alternative to porphyrin-based components used in supramolecular light-harvesting architectures.
An analytical method is presented that provides quantitative insight into light-driven electron density rearrangement using the output of standard time-dependent density functional theory (TD-DFT) computations on molecular compounds. Using final and initial electron densities for photochemical processes, the subtraction of summed electron density in each atomcentered Voronoi polyhedron yields the electronic charge difference, Q VECD . This subtractive method can also be used with Bader, Mulliken and Hirshfeld charges. A validation study shows Q VECD to have the most consistent performance across basis sets and good conservation of charge between electronic states. Besides vertical transitions, relaxation processes can be investigated as well. Significant electron transfer is computed for isomerization on the excited state energy surface of azobenzene. A number of linear anilinepyridinium donor-bridge-acceptor chromophores was examined using Q VECD to unravel the influence of its pi-conjugated bridge on charge separation. Finally, the usefulness of the presented method as a tool in optimizing charge transfer is shown for a homologous series of organometallic pigments. The presented work allows facile calculation of a novel, relevant quantity describing charge transfer processes at the atomic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.