Recommendation techniques have proven their usefulness as a tool to cope with the information overload problem in many classical domains such as movies, books, and music. Additional challenges for recommender systems emerge in the domain of tourism such as acquiring metadata and feedback, the sparsity of the rating matrix, user constraints, and the fact that traveling is often a group activity. This paper proposes a recommender system that offers personalized recommendations for travel destinations to individuals and groups. These recommendations are based on the users' rating profile, personal interests, and specific demands for their next destination. The recommendation algorithm is a hybrid approach combining a content-based, collaborative filtering, and knowledge-based solution. For groups of users, such as families or friends, individual recommendations are aggregated into group recommendations, with an additional opportunity for users to give feedback on these group recommendations. A group of test users evaluated the recommender system using a prototype web application. The results prove the usefulness of individual and group recommendations and show that users prefer the hybrid algorithm over each individual technique. This paper demonstrates the added value of various recommendation algorithms in terms of different quality aspects, compared to an unpersonalized list of the most-popular destinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.