After transport across the cytoplasmic membrane, bacterial outer membrane proteins are assembled into the outer membrane. Meningococcal Omp85 is a highly conserved protein in Gram-negative bacteria, and its homolog Toc75 is a component of the chloroplast protein-import machinery. Omp85 appeared to be essential for viability, and unassembled forms of various outer membrane proteins accumulated upon Omp85 depletion. Immunofluorescence microscopy revealed decreased surface exposure of outer membrane proteins, which was particularly apparent at the cell-division planes. Thus, Omp85 is likely to play a role in outer membrane protein assembly.
The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins.
Lipopolysaccharide (LPS), also known as endotoxin due to its severe pathophysiological effects in infected subjects, is an essential component of the outer membrane (OM) of most Gramnegative bacteria. LPS is synthesized in the bacterial inner membrane, a process that is now well understood. In contrast, the mechanism of its transport to the outer leaflet of the OM has remained enigmatic. We demonstrate here that the OM protein, known as increased membrane permeability (Imp) or organic solvent tolerance protein, is involved in this process. An Impdeficient mutant of Neisseria meningitidis was viable and produced severely reduced amounts of LPS. The limited amount of LPS that was still produced was not accessible to LPS-modifying enzymes expressed in the OM or added to the extracellular medium. We conclude therefore that Imp mediates the transport of LPS to the cell surface. The role of Imp in LPS biogenesis and its high conservation among Gram-negative bacteria make it an excellent target for the development of novel antibacterial compounds. G ram-negative bacteria are enclosed by a cell envelope consisting of an inner membrane (IM) and an outer membrane (OM), separated by the periplasm. The IM is a phospholipid bilayer, whereas the OM is an asymmetrical bilayer, containing phospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. LPS consists of a hydrophobic membrane anchor, lipid A, substituted with a nonrepeating oligosaccharide, the core region. In many bacteria, the core region is extended with the O antigen, a repeating oligosaccharide. The lipid A-core region and the O antigen are synthesized as separate units at the cytoplasmic leaflet of the IM. Almost all of the enzymes involved in their biosynthesis have been identified in Escherichia coli (1, 2). The transport of the lipid A-core moiety to the periplasmic side of the IM is mediated by the MsbA protein, an ATP-binding cassette family transporter (3), whereas flipping of O antigen units over the IM can be facilitated by several distinct mechanisms (1). At the periplasmic side of the IM, the O antigen is ligated to the lipid A-core region. The next step, transport of the fully assembled LPS through the periplasm and across the OM, remains an entirely elusive aspect of LPS biogenesis (1, 2). Recently, Omp85, an essential OMP, was suggested to be involved in this process (4). However, we found a severe OMP assembly defect in a Neisserial Omp85 mutant (5). This phenotype, together with the affinity of Omp85 for OMPs (5) and the presence of omp85 homologs in Gram-negative bacteria lacking LPS, are much more consistent with a role of this protein in OMP assembly, with only an indirect role in LPS transport. Braun and Silhavy (6) identified another essential OMP in E. coli, depletion of which resulted in the formation of aberrant membranes. Missense mutations in the gene encoding this 87-kDa OMP, called increased membrane permeability (Imp) or organic solvent tolerance protein, were already known to affect OM permeability (7,8). He...
SummaryPathogenic mycobacteria have the ability to persist in phagocytic cells and to suppress the immune system. The glycolipid lipoarabinomannan (LAM), in particular its mannose cap, has been shown to inhibit phagolysosome fusion and to induce immunosuppressive IL-10 production via interaction with the mannose receptor or DC-SIGN. Hence, the current paradigm is that the mannose cap of LAM is a crucial factor in mycobacterial virulence. However, the above studies were performed with purified LAM, never with live bacteria. Here we evaluate the biological properties of capless mutants of Mycobacterium marinum and M. bovis BCG, made by inactivating homologues of Rv1635c. We show that its gene product is an undecaprenyl phosphomannose-dependent mannosyltransferase. Compared with parent strain, capless M. marinum induced slightly less uptake by and slightly more phagolysosome fusion in infected macrophages but this did not lead to decreased survival of the bacteria in vitro, nor in vivo in zebra fish. Loss of caps in M. bovis BCG resulted in a sometimes decreased binding to human dendritic cells or DC-SIGN-transfected Raji cells, but no differences in IL-10 induction were observed. In mice, capless M. bovis BCG did not survive less well in lung, spleen or liver and induced a similar cytokine profile. Our data contradict the current paradigm and demonstrate that mannose-capped LAM does not dominate the Mycobacterium-host interaction.
Background Escherichia coli is the most common cause of bacteremia in high-income countries. To enable the development and implementation of effective prevention strategies, a better understanding of the current epidemiology of invasive E. coli infections is needed. Methods A systematic review of literature published between 1 January 2007 and 31 March 2018 on the burden and epidemiology of E. coli bacteremia in populations that include adults in high-income countries was conducted. Meta-analysis was performed for descriptive purposes. Results During the studied time interval, the estimated incidence rate of E. coli bacteremia was 48 per 100 000 person-years, but this increased considerably with age: rates per 100 000 person-years were >100 in 55-to-75-year-olds and >300 in 75-to-85-year-olds. Overall, E. coli accounted for 27% of documented bacteremia episodes: 18% if hospital acquired, 32% if community-onset healthcare associated, and 33% if community acquired. The estimated case fatality rate was 12%. Approximately 44% of episodes were community acquired, 27% community-onset healthcare associated, and 27% hospital acquired. Urinary tract infection (UTI) was the primary source for 53% of episodes. Conclusions This systematic review confirms the substantial burden of E. coli bacteremia in older adults and justifies the implementation of community-level programs to prevent E. coli bacteremia and ideally UTI in this age group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.