Advancing conventional open‐loop DBS as a therapy for PD is crucial for overcoming important issues such as the delicate balance between beneficial and adverse effects and limited battery longevity that are currently associated with treatment. Closed‐loop or adaptive DBS aims to overcome these limitations by real‐time adjustment of stimulation parameters based on continuous feedback input signals that are representative of the patient's clinical state. The focus of this update is to discuss the most recent developments regarding potential input signals and possible stimulation parameter modulation for adaptive DBS in PD. Potential input signals for adaptive DBS include basal ganglia local field potentials, cortical recordings (electrocorticography), wearable sensors, and eHealth and mHealth devices. Furthermore, adaptive DBS can be applied with different approaches of stimulation parameter modulation, the feasibility of which can be adapted depending on specific PD phenotypes. Implementation of technological developments like machine learning show potential in the design of such approaches; however, energy consumption deserves further attention. Furthermore, we discuss future considerations regarding the clinical implementation of adaptive DBS in PD. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Motor fluctuations in Parkinson’s disease are characterized by unpredictability in the timing and duration of dopaminergic therapeutic benefits on symptoms, including bradykinesia and rigidity. These fluctuations significantly impair the quality of life of many Parkinson’s patients. However, current clinical evaluation tools are not designed for the continuous, naturalistic (real-world) symptom monitoring needed to optimize clinical therapy to treat fluctuations. Although commercially available wearable motor monitoring, used over multiple days, can augment neurological decision making, the feasibility of rapid and dynamic detection of motor fluctuations is unclear. So far, applied wearable monitoring algorithms are trained on group data. In this study, we investigated the influence of individual model training on short timescale classification of naturalistic bradykinesia fluctuations in Parkinson’s patients using a single-wrist accelerometer. As part of the Parkinson@Home study protocol, 20 Parkinson patients were recorded with bilateral wrist accelerometers for a one hour OFF medication session and a one hour ON medication session during unconstrained activities in their own homes. Kinematic metrics were extracted from the accelerometer data from the bodyside with the largest unilateral bradykinesia fluctuations across medication states. The kinematic accelerometer features were compared over the 1 h duration of recording, and medication-state classification analyses were performed on 1 min segments of data. Then, we analyzed the influence of individual versus group model training, data window length, and total number of training patients included in group model training, on classification. Statistically significant areas under the curves (AUCs) for medication induced bradykinesia fluctuation classification were seen in 85% of the Parkinson patients at the single minute timescale using the group models. Individually trained models performed at the same level as the group trained models (mean AUC both 0.70, standard deviation respectively 0.18 and 0.10) despite the small individual training dataset. AUCs of the group models improved as the length of the feature windows was increased to 300 s, and with additional training patient datasets. We were able to show that medication-induced fluctuations in bradykinesia can be classified using wrist-worn accelerometry at the time scale of a single minute. Rapid, naturalistic Parkinson motor monitoring has the clinical potential to evaluate dynamic symptomatic and therapeutic fluctuations and help tailor treatments on a fast timescale.
Parkinson’s disease symptoms are most often charted using the MDS-UPDRS. Limitations of this approach include the subjective character of the assessments and a discrepant performance in the clinic compared to the home situation. Continuous monitoring using wearable devices is believed to eventually replace this golden standard, but measurements often lack a parallel ground truth or are only tested in lab settings. To overcome these limitations, this study explores the feasibility of a newly developed Parkinson’s disease monitoring system, which aims to measure Parkinson’s disease symptoms during daily life by combining wearable sensors with an experience sampling method application. Twenty patients with idiopathic Parkinson’s disease participated in this study. During a period of two consecutive weeks, participants had to wear three wearable sensors and had to complete questionnaires at seven semi-random moments per day on their mobile phone. Wearable sensors collected objective movement data, and the questionnaires containing questions about amongst others Parkinson’s disease symptoms served as parallel ground truth. Results showed that participants wore the wearable sensors during 94% of the instructed timeframe and even beyond. Furthermore, questionnaire completion rates were high (79,1%) and participants evaluated the monitoring system positively. A preliminary analysis showed that sensor data could reliably predict subjectively reported OFF moments. These results show that our Parkinson’s disease monitoring system is a feasible method to use in a diverse Parkinson’s disease population for at least a period of two weeks. For longer use, the monitoring system may be too intense and wearing comfort needs to be optimized.
Background Parkinson disease monitoring is currently transitioning from periodic clinical assessments to continuous daily life monitoring in free-living conditions. Traditional Parkinson disease monitoring methods lack intraday fluctuation detection. Electronic diaries (eDiaries) hold the potential to collect subjective experiences on the severity and burden of motor and nonmotor symptoms in free-living conditions. Objective This study aimed to develop a Parkinson disease–specific eDiary based on ecological momentary assessments (EMAs) and to explore its validation. Methods An observational cohort of 20 patients with Parkinson disease used the smartphone-based EMA eDiary for 14 consecutive days without adjusting free-living routines. The eDiary app presented an identical questionnaire consisting of questions regarding affect, context, motor and nonmotor symptoms, and motor performance 7 times daily at semirandomized moments. In addition, patients were asked to complete a morning and an evening questionnaire. Results Mean affect correlated moderate-to-strong and moderate with motor performance (R=0.38 to 0.75; P<.001) and motor symptom (R=0.34 to 0.50; P<.001) items, respectively. The motor performance showed a weak-to-moderate negative correlation with motor symptoms (R=−0.31 to −0.48; P<.001). Mean group answers given for on-medication conditions vs wearing-off-medication conditions differed significantly (P<.05); however, not enough questionnaires were completed for the wearing-off-medication condition to reproduce these findings on individual levels. Conclusions We presented a Parkinson disease–specific EMA eDiary. Correlations between given answers support the internal validity of the eDiary and underline EMA’s potential in free-living Parkinson disease monitoring. Careful patient selection and EMA design adjustment to this targeted population and their fluctuations are necessary to generate robust proof of EMA validation in future work. Combining clinical Parkinson disease knowledge with practical EMA experience is inevitable to design and perform studies, which will lead to the successful integration of eDiaries in free-living Parkinson disease monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.