Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.
Latent class cluster analysisVermunt, J.K.; Magidson, J.
Latent variable techniques are used as scaling tools when multiple responses related to the same construct are available. The differences between the four main types of latent variable models – factor analysis, latent trait analysis, latent profile analysis, and latent class analysis are described.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.-Users may download and print one copy of any publication from the public portal for the purpose of private study or research -You may not further distribute the material or use it for any profit-making activity or commercial gain -You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim. (2000) 91] recommendation for improving the Lee-Carter approach to the forecasting of demographic components. Specifically, the original method is embedded in a Poisson regression model, which is perfectly suited for age-sex-specific mortality rates. This model is fitted for each sex to a set of age-specific Belgian death rates. A time-varying index of mortality is forecasted in an ARIMA framework. These forecasts are used to generate projected age-specific mortality rates, life expectancies and life annuities net single premiums. Finally, a Brass-type relational model is proposed to adapt the projections to the annuitants population, allowing for estimating the cost of adverse selection in the Belgian whole life annuity market.
Latent class analysis is a clustering method that is nowadays widely used in social science research. Researchers applying latent class analysis will typically not only construct a typology based on a set of observed variables but also investigate how the encountered clusters are related to other, external variables. Although it is possible to incorporate such external variables into the latent class model itself, researchers usually prefer using a three-step approach. This is the approach wherein after establishing the latent class model for clustering (step 1), one obtains predictions for the class membership scores (step 2) and subsequently uses these predicted scores to assess the relationship between class membership and other variables (step 3). Bolck, Croon, and Hagenaars (2004) showed that this approach leads to severely downward-biased estimates of the strength of the relationships studied in step 3. These authors and later also Vermunt (2010) developed Downloaded from methods to correct for this bias. In the current study, we extended these correction methods to situations where class membership is not predicted but used as an explanatory variable in the third step, a situation widely encountered in social science applications. A simulation study tested the performance of the proposed correction methods, and their practical use was illustrated with real data examples. The results showed that also when the latent class variable is used as a predictor of external variables, the uncorrected three-step approach leads to severely biased estimates. The proposed correction methods perform well under conditions encountered in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.