Background The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. Methods This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1–9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020–001236–10). Findings Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56–73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76–1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27–0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26–1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63–1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3–13) in the imatinib group compared with 12 days (6–20) in the placebo group (p=0·0080). 91 (46%) of 197 pa...
BackgroundPulmonary arterial hypertension (PAH) patients have altered right atrial (RA) function and right ventricular (RV) diastolic stiffness. This study assessed the impact of RV diastolic stiffness on RA-RV interaction.MethodsLow or high end-diastolic elastance (Eed) PAH patients (n=94) were compared to controls (n=31). Treatment response was evaluated in n=62 patients. RV and RA longitudinal strain, RA emptying and RV filling were determined and diastole was divided in a passive and active phase. Vena cava backflow was calculated as RV active filling-RA active emptying; RA stroke work as RA active emptying*RV end-diastolic pressure.ResultsWith increased Eed, RA and RV passive strain were reduced while active strain was preserved. In comparison to controls, patients had lower RV passive filling, but higher RA active emptying and RA stroke work. RV active filling was lower in high Eed patients, resulting in higher vena cava backflow. Upon treatment, Eed reduced in half of high Eedpatients, which coincided with larger reductions in afterload, RV mass and vena cava backflow and greater improvements in RV active filling and stroke volume in comparison to patients in whom Eed remained high.ConclusionsIn PAH, RA function is associated with changes in RV function. Despite increased RA stroke work, severe RV diastolic stiffness is associated with reduced RV active filling and increased vena cava backflow. In 50% of high baseline Eed patients, diastolic stiffness remains high, despite treatment. Eed reduction coincided with a large reduction in afterload, increased RV active filling and decreased vena cava backflow.
Background: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disorder for which no effective treatment yet exists. Pulmonary hypertension (PH) and right atrial (RA) and ventricular (RV) dysfunction are frequently observed. The question remains whether the PH with the associated RV/RA dysfunction in HFpEF are markers of disease severity. Methods: To obtain insight in the relative importance of pressure-overload and left-to-right interaction, we compared RA and RV function in 3 groups: 1. HFpEF (n=13); 2. HFpEF-PH (n=33), and; 3. pulmonary arterial hypertension (PAH) matched to pulmonary artery pressures of HFpEF-PH (PH limited to mPAP ≥30 and ≤50 mmHg) (n=47). Patients underwent right heart catheterization and cardiac magnetic resonance imaging. Results: The right ventricle in HFpEF-PH was less dilated and hypertrophied than in PAH. In addition, RV ejection fraction was more preserved (HFpEF-PH: 52±11 versus PAH: 36±12%). RV filling patterns differed: vena cava backflow during RA contraction was observed in PAH only. In HFpEF-PH, RA pressure was elevated throughout the cardiac cycle (HFpEF-PH: 10 [8–14] versus PAH: 7 [5–10] mm Hg), while RA volume was smaller, reflecting excessive RA stiffness (HFpEF-PH: 0.14 [0.10–0.17] versus PAH: 0.08 [0.06–0.11] mm Hg/mL). RA stiffness was associated with an increased eccentricity index (HFpEF-PH: 1.3±0.2 versus PAH: 1.2±0.1) and interatrial pressure gradient (9 [5 to 12] versus 2 [−2 to 5] mm Hg). Conclusions: RV/RA function was less compromised in HFpEF-PH than in PAH, despite similar pressure-overload. Increased RA pressure and stiffness in HFpEF-PH were explained by left atrial/RA-interaction. Therefore, our results indicate that increased RA pressure is not a sign of overt RV failure but rather a reflection of HFpEF-severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.