At a high level, the tidyverse is a language for solving data science challenges with R code. Its primary goal is to facilitate a conversation between a human and a computer about data. Less abstractly, the tidyverse is a collection of R packages that share a high-level design philosophy and low-level grammar and data structures, so that learning one package makes it easier to learn the next.
This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disease staging), psychology (stages of cognitive development), human development (pubertal stages) and chronic diseases (stages of dementia). Transition probabilities between successive stages are modeled as smoothly varying functions of age. Age-conditional references are calculated from the modeled probabilities by the mid-P value. It is possible to eliminate the influence of age by calculating standard deviation scores (SDS). The method is applied to the empirical data to produce reference charts on secondary sexual maturation. The mean of the empirical SDS in the reference population is close to zero, whereas the variance depends on age. The stage line diagram provides quick insight into both status (in SDS) and tempo (in SDS/year) of development of an individual child. Other measures (e.g. height SDS, body mass index SDS) from the same child can be added to the chart. Diagrams for sexual maturation are available as a web application at http://vps.stefvanbuuren.nl/puberty. The stage line diagram expresses status and tempo of discrete changes on a continuous scale. Wider application of these measures scores opens up new analytic possibilities.
Participatory sensing (PS) is a distributed data collection and analysis approach where individuals, acting alone or in groups, use their personal mobile devices to systematically explore interesting aspects of their lives and communities [Burke et al. 2006]. These mobile devices can be used to capture diverse spatiotemporal data through both intermittent self-report and continuous recording from on-board sensors and applications. Ohmage (http://ohmage.org) is a modular and extensible open-source, mobile to Web PS platform that records, stores, analyzes, and visualizes data from both prompted self-report and continuous data streams. These data streams are authorable and can dynamically be deployed in diverse settings. Feedback from hundreds of behavioral and technology researchers, focus group participants, and end users has been integrated into ohmage through an iterative participatory design process. Ohmage has been used as an enabling platform in more than 20 independent projects in many disciplines. We summarize the PS requirements, challenges and key design objectives learned through our design process, and ohmage system architecture to achieve those objectives. The flexibility, modularity, and extensibility of ohmage in supporting diverse deployment settings are presented through three distinct case studies in education, health, and clinical research.
One of the most powerful features of R is its infrastructure for contributed code. The built-in package manager and complementary repositories provide a great system for development and exchange of code, and have played an important role in the growth of the platform towards the de-facto standard in statistical computing that it is today. However, the number of packages on CRAN and other repositories has increased beyond what might have been foreseen, and is revealing some limitations of the current design. One such problem is the general lack of dependency versioning in the infrastructure. This paper explores this problem in greater detail, and suggests approaches taken by other open source communities that might work for R as well. Three use cases are defined that exemplify the issue, and illustrate how improving this aspect of package management could increase reliability while supporting further growth of the R community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.