Plasticity is a crucial component of the life cycle of invertebrates that live as active adults throughout wet and dry seasons in the tropics. Such plasticity is seen in the numerous species of Bicyclus butterfl ies in Africa which exhibit seasonal polyphenism with sequential generations of adults with one or other of two alternative phenotypes. These differ not only in wing pattern but in many other traits. This divergence across a broad complex of traits is associated with survival and reproduction either in a wet season that is favourable in terms of resources, or mainly in a dry season that is more stressful. This phenomenon has led us to examine the bases of the developmental plasticity in a model species, B. anynana, and also the evolution of key adult life history traits, including starvation resistance and longevity. We now understand something about the processes that generate variation in the phenotype, and also about the ecological context of responses to environmental stress. The responses clearly involve a mix of developmental plasticity as cued by different environments in pre-adult development, and the acclimation of life history traits in adults to their prevailing environment.
Starvation resistance is an important trait related to survival in many species and often involves dramatic changes in physiology and homeostasis. The tropical African butterfly Bicyclus anynana lives in two seasonal environments and has evolved phenotypic plasticity. The contrasting demands of the favourable, wet season and the harsh, dry season have shaped a remarkable life history, which makes this species particularly interesting for investigating the relationship between starvation resistance, metabolism, and its environmental modulation.This study reports on two laboratory experiments to investigate the effects of pre-adult and adult temperatures that mimic the seasonal environments, on starvation resistance and resting metabolic rate (RMR) in adult B. anynana. In addition, we investigate starvation resistance in wet and dry seasonal form genotypes; artificial selection on eyespot size has yielded lines that only produce one or the other of the seasonal forms across all rearing environments. As expected, the results show a large effect of adult temperature. More relevant, we show here that both pre-adult temperature and genetic background also influence adult starvation resistance, showing that phenotypic plasticity in this species includes starvation resistance. The dry season form genotype has a higher starvation resistance when developed at dry season temperatures, indicating a genetic modulation of starvation resistance in relation to temperature. Paradoxically, dry season pre-adult temperatures reduce starvation resistance and raise RMR. The high overall association of RMR and starvation resistance in our experiments suggests that energy expenditure and survival are linked, but that they may counteract each other in their influence on fitness in the dry season. We hypothesize that metabolism is moderating a trade-off between preadult (larval) survival and adult survival in the dry season.
The current U.S. population represents an amalgam of individuals originating mainly from four continental regions (Africa, Europe, Asia and America). To study the genetic ancestry and compare with self-declared ancestry we have analyzed paternally, maternally and bi-parentally inherited DNA markers sensitive for indicating continental genetic ancestry in all four major U.S. American groups. We found that self-declared U.S. Hispanics and U.S. African Americans tend to show variable degrees of continental genetic admixture among the three genetic systems, with evidence for a marked sex-biased admixture history. Moreover, for these two groups we observed significant regional variation across the country in genetic admixture. In contrast, self-declared U.S. European and U.S. Asian Americans were genetically more homogeneous at the continental ancestry level. Two autosomal ancestry-sensitive markers located in skin pigmentation candidate genes showed significant differences in self-declared U.S. African Americans or U.S. European Americans, relative to their assumed parental populations from Africa or Europe. This provides genetic support for the importance of skin color in the complex process of ancestry identification. © 2010 Wiley-Liss, Inc.
Exploring technological limits is a common practice in forensic DNA research. Reliable genetic profiling based on only a few cells isolated from trace material retrieved from a crime scene is nowadays more and more the rule rather than the exception. On many crime scenes, cartridges, bullets, and casings (jointly abbreviated as CBCs) are regularly found, and even after firing, these potentially carry trace amounts of biological material. Since 2003, the Forensic Laboratory for DNA Research is routinely involved in the forensic investigation of CBCs in the Netherlands. Reliable DNA profiles were frequently obtained from CBCs and used to match suspects, victims, or other crime scene-related DNA traces. In this paper, we describe the sensitive method developed by us to extract DNA from CBCs. Using PCR-based genotyping of autosomal short tandem repeats, we were able to obtain reliable and reproducible DNA profiles in 163 out of 616 criminal cases (26.5%) and in 283 out of 4,085 individual CBC items (6.9%) during the period January 2003–December 2009. We discuss practical aspects of the method and the sometimes unexpected effects of using cell lysis buffer on the subsequent investigation of striation patterns on CBCs.
Starvation resistance is closely associated with fitness in natural populations of many organisms. It often co-varies with longevity and is a relevant target for understanding the evolution of aging. We selected for increased starvation resistance in the seasonally polyphenic butterfly Bicyclus anynana in a warm, wet-seasonal environment over 17 generations. We measured the response to selection for two selected lines compared to that of an unselected stock. Results show an increase in survival under adult starvation of 50%-100%. In addition, selection lines showed an increase in life span under normal adult feeding of 30%-50%. Female reproduction was changed toward laying fewer but larger eggs. The results indicate a sex-specific response to selection: females reallocated resources toward a more durable body, whereas males appeared to increase starvation resistance through changed metabolic rate. The phenotype produced by artificial selection resembles the form that occurs in the cool, dry-season environment, which suggests that selection has targeted the regulatory mechanisms for survival that are also involved in the suite of traits (including starvation resistance) central to the adaptive plastic response of this butterfly to seasonal conditions. In general, these results imply that the regulation of life span involves mechanisms of phenotypic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.