A macroeconomic model based on the economic variables (i) assets, (ii) leverage (defined as debt over asset) and (iii) trust (defined as the maximum sustainable leverage) is proposed to investigate the role of credit in the dynamics of economic growth, and how credit may be associated with both economic performance and confidence. Our first notable finding is the mechanism of reward/penalty associated with patience, as quantified by the return on assets. In regular economies where the EBITA/Assets ratio is larger than the cost of debt, starting with a trust higher than leverage results in the highest long-term return on assets (which can be seen as a proxy for economic growth). Therefore, patient economies that first build trust and then increase leverage are positively rewarded. Our second main finding concerns a recommendation for the reaction of a central bank to an external shock that affects negatively the economic growth. We find that late policy intervention in the model economy results in the highest long-term return on assets and largest asset value. But this comes at the cost of suffering longer from the crisis until the intervention occurs. The phenomenon that late intervention is most effective to attain a high long-term return on assets can be ascribed to the fact that postponing intervention allows trust to increase first, and it is most effective to intervene when trust is high. These results derive from two fundamental assumptions underlying our model: (a) trust tends to increase when it is above leverage; (b) economic agents learn optimally to adjust debt for a given level of trust and amount of assets. Using a Markov Switching Model for the EBITA/Assets ratio, we have successfully calibrated our model to the empirical data of the return on equity of the EURO STOXX 50 for the time period 2000-2013. We find that dynamics of leverage and trust can be highly non-monotonous with curved trajectories, as a result of the nonlinear coupling between the variables. This has an important implication for policy makers, suggesting that simple linear forecasting can be deceiving in some regimes and may lead to inappropriate policy decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.