fellettiD fF nd qri de venizD gF nd tonesD tF nd fizziD F nd f¤ orgerD vF nd egurD qF nd gstellettiD eF nd n de fundD F nd erestrupD uF nd frryD tF nd felkD uF nd ferkhuysenD eF nd firnieEquvinD uF nd fussettiniD wF nd grolliD wF nd gonsuegrD F nd hopioD iF nd peierfeilD F nd pern¡ ndezD F nd pernndez qrridoD F nd qriEzquezD iF nd qrridoD F nd qinnioD qF nd qoughD F nd tepsenD xF nd tonesD FiF nd uempD F nd uerrD tF nd uingD tF nd Lpi¡ nskD wF nd v¡ zroD qF nd vusD wFgF nd wrelloD vF nd wrtinD F nd wqinnityD F nd y9rnleyD tF nd ylivo del emoD F nd rsiewizD F nd inonD qF nd odriguezD gF nd oyteD tF nd hneiderD gFF nd ummersD tFF nd llesiD F nd owlesD eFF nd erspoorD iF nd nningenD rF nd ntzenD uFwF nd ildmnD vF nd lewskiD wF @PHPHA 9wore thn one million rriers frgment iurope9s riversF9D xtureFD SVV F ppF RQTERRIF Further information on publisher's website: httpsXGGdoiForgGIHFIHQVGsRISVTEHPHEQHHSEP Publisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Peer-review status of attached le: eerEreviewed Citation for published item: tonesD toshu nd f¤ orgerD vu nd ummersD teroen nd tonesD eter nd vusD wrtyn nd uerrD tim nd uempD ul nd fizziD imone nd gonsuegrD o( nd wrelloD vuio nd owlesD endrew nd fellettiD frr nd erspoorD iri nd de fundD nd qoughD eter nd de venizD grlos qri @PHIWA 9e omprehensive ssessment of strem frgmenttion in qret fritinF9D iene of the totl environmentFD TUQ F ppF USTEUTPF
. (2016) 'Evaluating the eectiveness of restoring longitudinal connectivity for stream sh communities : towards a more holistic approach.', Science of the total environment., 569-570 . pp. 850-860. Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractA more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radiotracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows.However, even during low flows, displaced PIT tagged juvenile trout (total n = 153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n = 5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Short-term post-restoration data (2-3 years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonised. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such obstacles is not needed to manage non-native invasive species. Evaluation of the effectiveness of fish community restoration in degraded streams benefits from a similarly holistic approach.
Aquatic invasive species (AIS) are one of the principal threats to freshwater biodiversity. Exclusion barriers are increasingly being used as a management strategy to control the spread of AIS. However, exclusion barriers can also impact native organisms and their effectiveness is likely to be context dependent. We conducted a quantitative literature review to evaluate the use of barriers to control animal AIS in freshwater ecosystems worldwide. The quantitative aspect of the review was supplemented by case studies that describe some of the challenges, successes, and opportunities for the use of the use of AIS exclusion barriers globally. Barriers have been used since the 1950s to control the spread of AIS, but effort has been increasing since 2005 (80% of studies) and an increasingly diverse range of AIS taxa are now targeted in a wide range of habitat types. The global use of AIS barriers has been concentrated in North America (74% of studies), Australasia (11%), and Europe (10%). Physical barriers (e.g., weirs, exclusion screens, and velocity barriers) have been most widely used (47%), followed by electric (27%) and chemical barriers (12%). Fish were the most targeted taxa (86%), followed by crustaceans (10%), molluscs (3%) and amphibians (1%). Most studies have been moderately successful in limiting the passage of AIS, with 86% of the barriers tested deterring >70% of individuals. However, only 25% of studies evaluated barrier impacts on native species, and development of selective passage is still in its infancy. Most studies have been too short (47% < 1 year, 87% < 5 years) to detect ecological impacts or have failed to use robust before-after-control-impact (BACI) study designs (only 5%). Hence, more effective monitoring is required to assess the long-term effectiveness of exclusion barriers as an AIS management tool. Our global case studies highlight the pressing need for AIS control in many ecoregions, and exclusion barriers have the potential to become an effective tool in some situations. However, the design and operation of exclusion barriers must be refined to deliver selective passage of native fauna, and exclusion barriers should only be used sparingly as part of a wider integrated management strategy.
The nal publication is available at Springer via https://doi.org/10.1007/s10750-016-2720-z Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. anadromous brown trout (Salmo trutta), however the precise timing, extent and ecological 15 significance of such behaviour remains ambiguous. We investigated the phenology of downstream 16 migration of wild juvenile trout using passive integrated transponder (PIT) telemetry over an eight 17 month period in two European rivers; the River Deerness, north-east England, and the River 18 Villestrup, Denmark. The incidence of autumn-winter seaward migration was greater in the Deerness 19 than the Villestrup, with at least 46 % of migrating juveniles detected prior to spring smoltification in 20 the Deerness. Timing of migration was strongly regulated by factors associated with river discharge 21 in both systems. While autumn and spring downstream migrants did not differ in size at the time of 22 tagging in either system, evidence that spring migrants were of better condition, travelled faster 23 (autumn: 11.0 km day -1 ; spring: 24.3 km day -1 ) and were more likely to leave the Deerness suggests 24 autumn and spring migrant conspecifics respond to different behavioural motivations. Further 25 investigation into the sex of autumn migrant juveniles, as well as the temporal and geographical 26 variability in the incidence and fitness consequences of autumn emigration by juvenile trout would 27 be beneficial. 28
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.