The optical intensity transmitted through a random pattern of subwavelength holes in a metal film exhibits a speckle pattern. We study the variation of this speckle pattern as a function of wavelength. We find that the resulting speckle correlation function (SCF) separates into a wavelength-dependent part and a wavelength-independent background. The wavelength dependence is caused by surface plasmons excited at one hole and coupled out at another hole, while the constant background originates from light transmitted directly through the holes. By analyzing the SCF for a set of samples of varying hole density, we find the propagation length of the surface plasmons and the scattering losses induced by the holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.