The structural correlates of impaired cognition in type 2 diabetes are unclear. The present study compared cognition and brain magnetic resonance imaging (MRI) between type 2 diabetic patients and nondiabetic control subjects and assessed the relationship between cognition and MRI findings and blood pressure and metabolic control. The study included 113 patients and 51 control subjects. Brain MRI scans were rated for white matter lesions (WMLs), cortical and subcortical atrophy, and infarcts. Neuropsychological test scores were divided into five cognitive domains and expressed as standardized Z values. Type 2 diabetes was associated with deep WMLs (P ؍ 0.02), cortical (P < 0.001) and subcortical (P < 0.05) atrophy, (silent) infarcts (P ؍ 0.06), and impaired cognitive performance (attention and executive function, information-processing speed, and memory, all P < 0.05). Adjustment for hypertension did not affect the results. Within the type 2 diabetic group, cognitive function was inversely related with WMLs, atrophy, and the presence of infarcts (adjusted for age, sex, and estimated IQ), and there was a modest association with HbA 1c and diabetes duration. This association was strongest for age, even more so than in control subjects. We conclude that cognitive impairments in patients with type 2 diabetes are not only associated with subcortical ischemic changes in the brain, but also with increased brain atrophy. Diabetes
Atrophy is regarded a sensitive marker of neurodegenerative pathology. In addition to confirming the well-known presence of decreased global grey matter and hippocampal volumes in Alzheimer's disease, this study investigated whether deep grey matter structure also suffer degeneration in Alzheimer's disease, and whether such degeneration is associated with cognitive deterioration. In this cross-sectional correlation study, two groups were compared on volumes of seven subcortical regions: 70 memory complainers (MCs) and 69 subjects diagnosed with probable Alzheimer's disease. Using 3T 3D T1 MR images, volumes of nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen and thalamus were automatically calculated by the FMRIB's Integrated Registration and Segmentation Tool (FIRST)—algorithm FMRIB's Software Library (FSL). Subsequently, the volumes of the different regions were correlated with cognitive test results. In addition to finding the expected association between hippocampal atrophy and cognitive decline in Alzheimer's disease, volumes of putamen and thalamus were significantly reduced in patients diagnosed with probable Alzheimer's disease. We also found that the decrease in volume correlated linearly with impaired global cognitive performance. These findings strongly suggest that, beside neo-cortical atrophy, deep grey matter structures in Alzheimer's disease suffer atrophy as well and that degenerative processes in the putamen and thalamus, like the hippocampus, may contribute to cognitive decline in Alzheimer's disease.
The authors determined normal reference values for morphologic variants and diameter measurements of the circle of Willis specific to three dimensional time-of-flight MR angiography.
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g ¼ À 0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.