BackgroundLeptospirosis is a major public health concern in New Caledonia (NC) and in other tropical countries. Severe manifestations of the disease are estimated to occur in 5–15% of all human infections worldwide and factors associated with these forms are poorly understood. Our objectives were to identify risk factors and predictors of severe forms of leptospirosis in adults.Methods and FindingsWe conducted a retrospective case-control study of inpatients with laboratory-confirmed leptospirosis who were admitted to two public hospitals in NC in 2008–2011. Cases were patients with fatal or severe leptospirosis, as determined by clinical criteria. This approach was meant to be pragmatic and to reflect the routine medical management of patients. Controls were defined as patients hospitalized for milder leptospirosis. Risk and prognostic factors were identified by multivariate logistic regression. Among the 176 patients enrolled in the study, 71 had criteria of severity including 10 deaths (Case Fatality Rate = 14.1%). Three risk factors were independently associated with severe leptospirosis: current cigarette smoking (OR = 2.94 [CI 1.45–5.96]); delays >2 days between the onset of symptoms and the initiation of antibiotherapy (OR = 2.78 [CI 1.31–5.91]); and Leptospira interrogans serogroup Icterohaemorrhagiae as the infecting strain (OR = 2.79 [CI 1.26–6.18]). The following post-admission laboratory results correlated with poor prognoses: platelet count ≤50,000/µL (OR = 6.36 [CI 1.79–22.62]), serum creatinine >200 mM (OR = 5.86 [CI 1.61–21.27]), serum lactate >2.5 mM (OR = 5.14 [CI 1.57–16.87]), serum amylase >250 UI/L (OR = 4.66 [CI 1.39–15.69]) and leptospiremia >1000 leptospires/mL (OR = 4.31 [CI 1.17–15.92]).ConclusionsTo assess the risk of developing severe leptospirosis, our study illustrates the benefit for clinicians to have: i) the identification of the infective strain, ii) a critical threshold of qPCR-determined leptospiremia and iii) early laboratory results. In New Caledonia, preventative measures should focus on early presumptive antibacterial therapy and on rodent (reservoir of Icterohaemorrhagiae serogroup) control.
BackgroundWidespread but particularly incident in the tropics, leptospirosis is transmitted to humans directly or indirectly by virtually any Mammal species. However, rodents are recognized as the most important reservoir. In endemic regions, seasonal outbreaks are observed during hot rainy periods. In such regions, hot spots can be evidenced, where leptospirosis is “hyper-endemic”, its incidence reaching 500 annual cases per 100,000. A better knowledge of how rodent populations and their Leptospira prevalence respond to seasonal and meteorological fluctuations might help implement relevant control measures.Methodology/Principal FindingsIn two tribes in New Caledonia with hyper-endemic leptospirosis, rodent abundance and Leptospira prevalence was studied twice a year, in hot and cool seasons for two consecutive years. Highly contrasted meteorological situations, particularly rainfall intensities, were noted between the two hot seasons studied. Our results show that during a hot and rainy period, both the rodent populations and their Leptospira carriage were higher. This pattern was more salient in commensal rodents than in the sylvatic rats.Conclusions/SignificanceThe dynamics of rodents and their Leptospira carriage changed during the survey, probably under the influence of meteorology. Rodents were both more numerous and more frequently carrying (therefore disseminating) leptospires during a hot rainy period, also corresponding to a flooding period with higher risks of human exposure to waters and watered soils. The outbreaks of leptospirosis in hyper-endemic areas could arise from meteorological conditions leading to both an increased risk of exposure of humans and an increased volume of the rodent reservoir. Rodent control measures would therefore be most effective during cool and dry seasons, when rodent populations and leptospirosis incidence are low.
Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C6 and long-chain C16-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C6-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω–azido-C6-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω–azido-C6-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae.
The sphingolipid ceramide regulates cellular processes such as differentiation, proliferation, growth arrest and apoptosis. Ceramide-rich membrane areas promote structural changes within the plasma membrane which segregates membrane receptors and affect membrane curvature and vesicle formation, fusion and trafficking. Here, we label ceramides by immunocytochemistry and visualize their distribution on the plasma membrane of different cells with virtually molecular resolution by direct stochastic optical reconstruction microscopy (dSTORM). Super-resolution images show that independent of labeling conditions and cell type 50–60% of all membrane ceramides are located in ceramide-rich platforms (CRPs) with a size of ~ 75 nm which are composed of at least ~ 20 ceramides. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increases the overall ceramide concentration in the plasma membrane, the quantity of CRPs and their size. Simultaneously, the ceramide concentration in CRPs increases approximately twofold.
Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139 ؊ mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.