The transcription factor STAT5 (signal transducer and activator of transcription 5) is frequently activated in hematological malignancies and represents an essential signaling node downstream of the BCR-ABL oncogene. STAT5 can be phosphorylated at three positions, on a tyrosine and on the two serines S725 and S779. We have investigated the importance of STAT5 serine phosphorylation for BCR-ABL-induced leukemogenesis. In cultured bone marrow cells, expression of a STAT5 mutant lacking the S725 and S779 phosphorylation sites (STAT5SASA) prohibits transformation and induces apoptosis. Accordingly, STAT5SASA BCR-ABL+ cells display a strongly reduced leukemic potential in vivo, predominantly caused by loss of S779 phosphorylation that prevents the nuclear translocation of STAT5. Three distinct lines of evidence indicate that S779 is phosphorylated by group I p21-activated kinase (PAK). We show further that PAK-dependent serine phosphorylation of STAT5 is unaffected by BCR-ABL tyrosine kinase inhibitor treatment. Interfering with STAT5 phosphorylation could thus be a novel therapeutic approach to target BCR-ABL-induced malignancies.
STAT3 and STAT5 (STAT3/5) proteins are crucial mediators of cytokine- or growth factor-induced cell survival and proliferation. These transcription factors are frequently overactivated in a variety of solid tumors and hematopoietic neoplasms and are targets of various oncogenes with tyrosine kinase activity. STAT3/5 proteins regulate expression of genes involved in survival and proliferation in the nucleus and interact with signaling pathways in the cytoplasm. Evidences for a cross-talk between STAT3/5 and oxidative metabolism have recently emerged. This review summarizes the current knowledge on the cross-regulation between STAT3/5 and oxidative metabolism in normal and cancer cells.
The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell-cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34 + progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.