This paper describes a model driven methodology in order to implement an interoperable communication architecture supporting TSO-DSO information exchange. The model driven methodology goes through Smart Grid Architecture Model interoperability layers and leverage international standards. The Use Case approach is utilized for identification of information exchange requirements, which are materialized through Business Objects gap analysis against existing standardized IEC CIM (Common Information Model) profiles. Determined set of standardized Business Objects can be implemented using several communication technologies. Some of these up-to-date technologies are provided by off the shelf solutions such as ECCo SP, a secure and scalable platform provided by ENTSO-E.
The growing penetration of renewable energy sources (RES) in the electrical power sector has increased the amount of distributed generation (DG) units connected at the distribution system level. In this context, new balancing challenges have arisen, creating the need for a novel use case methodology to enable an active role at the distribution system level such that transmission system operators (TSOs) can coordinate with distribution system operators (DSOs) with regard to connected resources for balancing purposes. In this study, the exploitation of the DSO-connected resources for balancing purposes in a market environment is proposed and evaluated via a novel business use case (BUC) methodology based on the categorization of IEC 62913-1. More specifically, in order to address different balancing market situations, two scenarios are considered with regard to the BUC. The first one represents the data exchange between the TSO, the DSO, and the balancing service provider (BSP). The second one represents an alternative scenario where data are exchanged directly between the TSO and the DSO, where the DSO also takes on the role of the BSP. The proposed BUC was also developed in order to validate the required data modeling and exchange mechanisms between DSOs and TSOs in order to exploit DSO-connected resources for overall system balancing purposes across different time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.