It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated weblike structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonanceoverlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.
We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the longterm orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of first importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations, and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.
Recent studies have shown that the medium-Earth orbit (MEO) region of the Global Navigation Satellite Systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow of an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximumeccentricity method to identify long-term stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region toward the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.