Basal and luminal are two molecular subtypes of breast cancer with opposite histoclinical features. We report a combined, high-resolution analysis of genome copy number and gene expression in primary basal and luminal breast cancers. First, we identified and compared genomic alterations in 45 basal and 48 luminal tumors by using 244K oligonucleotide array comparative genomic hybridization (aCGH). We found various genome gains and losses and rare high-level gene amplifications that may provide therapeutic targets. We show that gain of 10p is a new alteration in basal breast cancer and that a subregion of the 8p12 amplification is specific of luminal tumors. Rare high-level amplifications contained BCL2L2, CCNE, EGFR, FGFR2, IGF1R, NOTCH2, and PIK3CA. Potential gene breaks involved ETV6 and FLT3. Second, we analyzed both aCGH and gene expression profiles for 42 basal and 32 luminal breast cancers. The results support the existence of specific oncogenic pathways in basal and luminal breast cancers, involving several potential oncogenes and tumor suppressor genes (TSG). In basal tumors, 73 candidate oncogenes were identified in chromosome regions 1q21-23, 10p14, and 12p13 and 28 candidate TSG in regions 4q32-34 and 5q11-23. In luminal breast cancers, 33 potential oncogenes were identified in 1q21-23, 8p12-q21, 11q13, and 16p12-13 and 61 candidate TSG in 16q12-13, 16q22-24, and 17p13. HORMAD1 (P = 6.5 Â 10 À5 ) and ZNF703 (P = 7 Â 10 À4
BackgroundPlasmodium ovale is one of the five malaria species infecting humans. Recent data have shown that the name of this neglected species masks two distinct genotypes also called curtisi and wallikeri. Some authors show that these species could be sympatric. These two subspecies are not differentiated by microscopy techniques and malaria rapid diagnostic tests. This diagnostic defect is the result of low parasitaemia, antigenic polymorphism and absence of antibodies performance and requires the use of sequencing techniques. An accurate and easy discrimination detection method is necessary.MethodsA new molecular assay was developed to easily identify the two genotypes of P. ovale. This tool allowed the study of 90 blood samples containing P. ovale, confirmed by molecular biology techniques, which were obtained from patients with imported malaria.ResultsThe new marker was validated on well genotyped samples. The genotype of 90 P. ovale samples mainly imported from the Ivory Coast and the Comoros Islands was easily and quickly realized. The distribution of the two subspecies was described with a significant number of samples and showed that the two genotypes were present in the studied countries.ConclusionThis work confirms the presence of the two species in the same country for the first time, in the Ivory Coast and the Comoros Islands. A better genotyping of P. ovale types may improve a better characterization of the clinical pathophysiology for each.
One of the most important public health problems in the world today is the emergence and dissemination of drug-resistant malaria parasites. Plasmodium falciparum is the causative agent of the most lethal form of human malaria. New anti-malarial strategies are urgently required, and their design and development require the identification of potential therapeutic targets. However, the molecular mechanisms controlling the life cycle of the malaria parasite are still poorly understood. The published genome sequence of P. falciparum and previous studies have revealed that several homologues of eukaryotic signalling proteins, such as protein kinases, are relatively conserved. Protein kinases are now widely recognized as important drug targets in protozoan parasites. Cyclic AMP-dependent protein kinase (PKA) is implicated in numerous processes in mammalian cells, and the regulatory mechanisms of the cAMP pathway have been characterized. P. falciparum cAMP-dependent protein kinase plays an important role in the parasite's life cycle and thus represents an attractive target for the development of anti-malarial drugs. In this review, we focus on the P. falciparum cAMP/PKA pathway to provide new insights and an improved understanding of this signalling cascade.
BackgroundOver its life cycle, the Plasmodium falciparum parasite is exposed to different environmental conditions, particularly to variations in O2 pressure. For example, the parasite circulates in human venous blood at 5% O2 pressure and in arterial blood, particularly in the lungs, at 13% O2 pressure. Moreover, the parasite is exposed to 21% O2 levels in the salivary glands of mosquitoes.MethodsTo study the metabolic adaptation of P. falciparum to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.ResultsEven though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.ConclusionsThese results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of P. falciparum to environmental changes and may lead to the development of novel therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.