Conformal field theory (CFT) has been extremely successful in describing large-scale universal effects in one-dimensional (1D) systems at quantum critical points. Unfortunately, its applicability in condensed matter physics has been limited to situations in which the bulk is uniform because CFT describes low-energy excitations around some energy scale, taken to be constant throughout the system. However, in many experimental contexts, such as quantum gases in trapping potentials and in several out-of-equilibrium situations, systems are strongly inhomogeneous. We show here that the powerful CFT methods can be extended to deal with such 1D situations, providing a few concrete examples for non-interacting Fermi gases. The system's inhomogeneity enters the field theory action through parameters that vary with position; in particular, the metric itself varies, resulting in a CFT in curved space. This approach allows us to derive exact formulas for entanglement entropies which were not known by other means.
The emergence of a special type of fluid-like behavior at large scales in one-dimensional (1d) quantum integrable systems, theoretically predicted in 2016, is established experimentally, by monitoring the time evolution of the insitu density profile of a single 1d cloud of 87 Rb atoms trapped on an atom chip after a quench of the longitudinal trapping potential. The theory can be viewed as a dynamical extension of the thermodynamics of Yang and Yang, and applies to the whole range of repulsive interaction strength and temperature of the gas. The measurements, performed on weakly interacting atomic clouds that lie at the crossover between the quasicondensate and the ideal Bose gas regimes, are in very good agreement with the 2016 theory. This contrasts with the previously existing "conventional" hydrodynamic approach-that relies on the assumption of local thermal equilibrium-, which is unable to reproduce the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.