Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Human mature erythrocytes have been considered as unable to undergo programmed cell death (PCD), due to their lack of mitochondria, nucleus and other organelles, and to the finding that they survive two conditions that induce PCD in vitro in all human nucleated cells, treatment with staurosporine and serum deprivation. Here we report that mature erythrocytes can undergo a rapid self-destruction process sharing several features with apoptosis, including cell shrinkage, plasma membrane microvesiculation, phosphatidylserine externalization, and leading to erythrocyte disintegration, or, in the presence of macrophages, to macrophage ingestion of dying erythrocytes. This regulated form of PCD was induced by Ca 2+ influx, and prevented by cysteine protease inhibitors that allowed erythrocyte survival in vitro and in vivo. The cysteine proteinases involved seem not to be caspases, since (i) proforms of caspase 3, while present in erythrocytes, were not activated during erythrocyte death; (ii) cytochrome c, a critical component of the apoptosome, was lacking; and (iii) cell-free assays did not detect activated effectors of nuclear apoptosis in dying erythrocytes. Our findings provide the first identification that a death program can operate in the absence of mitochondria. They indicate that mature erythrocytes share with all other mammalian cell types the capacity to selfdestruct in response to environmental signals, and imply that erythrocyte survival may be modulated by therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.