BackgroundTrees experience mechanical stimuli -like wind- that trigger thigmomorphogenetic syndrome, leading to modifications of plant growth and wood quality. This syndrome affects tree productivity but is also believed to improve tree acclimation to chronic wind. Wind is particularly challenging for trees, because of their stature and perenniality. Climate change forecasts are predicting that the occurrence of high wind will worsen, making it increasingly vital to understand the mechanisms regulating thigmomorphogenesis, especially in perennial plants. By extension, this also implies factoring in the recurring nature of wind episodes. However, data on the molecular processes underpinning mechanoperception and transduction of mechanical signals, and their dynamics, are still dramatically lacking in trees.ResultsHere we performed a genome-wide and time-series analysis of poplar transcriptional responsiveness to transitory and recurring controlled stem bending, mimicking wind. The study revealed that 6% of the poplar genome is differentially expressed after a single transient bending. The combination of clustering, Gene Ontology categorization and time-series expression approaches revealed the diversity of gene expression patterns and biological processes affected by stem bending. Short-term transcriptomic responses entailed a rapid stimulation of plant defence and abiotic stress signalling pathways, including ethylene and jasmonic acid signalling but also photosynthesis process regulation. Late transcriptomic responses affected genes involved in cell wall organization and/or wood development. An analysis of the molecular impact of recurring bending found that the vast majority (96%) of the genes differentially expressed after a first bending presented reduced or even net-zero amplitude regulation after the second exposure to bending.ConclusionThis study constitutes the first dynamic characterization of the molecular processes affected by single or repeated stem bending in poplar. Moreover, the global attenuation of the transcriptional responses, observed from as early as after a second bending, indicates the existence of a mechanism governing a fine tuning of plant responsiveness. This points toward several mechanistic pathways that can now be targeted to elucidate the complex dynamics of wind acclimation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3670-1) contains supplementary material, which is available to authorized users.
Quebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively). Their respective sequences exhibited close similarity with the previously cloned acyclic sugar polyol transporters, and shared the main features of the major facilitative superfamily. The functional activity of one of the cDNAs was determined by using an HbPLT2-complemented yeast strain. These strains displayed a marginal absorption of cyclic (inositol) and acyclic (mannitol and sorbitol) polyol but no absorption of sucrose, hexose and glycerol. Active absorption for xylitol was detected, and was competitively inhibited by quebrachitol. HbPLT1 and HbPLT2 expression patterns varied in response to different stimuli. Bark treatment with ethylene resulted in an early and significant up-regulation of HbPLT2 transcripts in laticifers as well as in inner bark cells, when compared with HbPLT1. Other treatments, especially mechanical wounding, strongly induced HbPLT2 transcripts. These data were consistent with the presence of ethylene and a wound-responsive regulatory cis-element on the sequence of the HbPLT2 promoter. All these findings together with those recently obtained for sucrose transporters and aquaporins are discussed in relation to the different roles for quebrachitol in Hevea brasiliensis.
A sunflower BAC library consisting of 147,456 clones with an average size of 118 kb has been constructed and characterized. It represents approximately 5x sunflower haploid genome equivalents. The BAC library has been arranged in pools and superpools of DNA allowing screening with various PCR-based markers. Each of the 32 superpools contains 4,608 clones and corresponds to a 36 matrix pools. Thus, the screening of the entire library could be accomplished in less than 80 PCR reactions including positive and negative controls. As a demonstration of the feasibility of the concept, a set of 24 SSR markers covering about 36 cM in the sunflower SSR map (Tang et al. in Theor Appl Genet 105:1124-1136, 2002) have been used to screen the BAC library. About 125 BAC clones have been identified and then organized in 23 contigs by HindIII digestion. The contigs are anchored on the SSR map and thus constitutes a first-generation physical map of this region. The utility of this BAC library as a genomic resource for physical mapping and map-based cloning in sunflower is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.