We describe here an in vitro behavioral assay for testing mosquito repellents applied in a dose-based manner to a warm body (34 degrees C) in test cages. The system was used to assess the sensitivity of 4-6-day-old Anopheles gambiae to the insect repellent diethyl methyl benzamide (deet). These tests were made in the absence and presence of additional carbon dioxide (CO2) applied as a pulse to activate mosquitoes in the cages. In the absence of the CO2 pulse the mosquitoes hardly responded to the warm body. Increasing the CO2 level in the cage by 1,000 parts per million caused a 25-fold increase in the number of landings by mosquitoes on the warm body in 2-min tests. This mosquito activation allowed the measurement of a significant reduction in the number of landings to bite on the warm body with increasing doses of deet (0.4 to 3.8 microg/cm2). An asymptotic nonlinear model fitted to the repellency data in the presence of CO2 allowed estimation of the effective dose of deet that reduced landings to bite by 50% (ED50) at 0.95 microg/cm2 (5 nmol/cm2) and the corresponding ED95 at 4.12 microg/cm2 (21.5 nmol/cm2). This in vitro bioassay has the advantage of permitting a fast throughput of test products under standardized conditions and is suitable for screenings designed for the purpose of discovering lead products with as yet unknown human toxicological and dermatological profiles.
The degree of resource monopolization relates to the distribution of resources in space and time. In general, monopolization is predicted to be high when resources (food or mates) are clumped in space, dispersed in time, and predictable in space or time. Using the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae), we qualitatively tested a general model that predicts the distribution of mating success among competing males based on the temporal pattern of female arrivals relative to mating time and a ranking of males in priority of access to the resource (here by body size). In a laboratory experiment approximating the natural mating situation, a constant number of males of various sizes were allowed to compete for females. As predicted, mate monopolization decreased as the temporal clumping of female arrivals increased, mediated by either a decrease in the mean or an increase in the variance of female inter-arrival times, which were manipulated independently. Males appeared to adjust their behavior to variation in female arrivals in a manner consistent with the marginal value theory of Parker and associates: forcible takeovers of females were rarer, and copula durations shorter, when females arrived regularly at short intervals. Therefore, a complex interaction of variation in intrinsic characteristics affecting male resource holding potential, mating time and stochastic, extrinsic variables increasing temporal clumping of mates generally reduces the variance in mating success among competing males and thus ultimately the opportunity and intensity of sexual selection on traits influencing male success. This theory extends operational sex ratio theory at the mechanistic, behavioral level
The responses of Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to odors from male and female axillary sweat incubated with human axilla bacteria were recorded in a dual-choice olfactometer. Staphylococcus epidermidis was selected for its low odor-producing pattern, Corynebacterium jeikeium for its strong Nα-acylglutamine aminoacylase activity liberating carboxylic acids including (R)/(S)-3-hydroxy-3-methylhexanoic acid (HMHA) and Staphylococcus haemolyticus for its capacity to liberate sulfur-containing compounds including (R/S)-3-methyl-3-sulfanylhexan-1-ol (MSH). Anopheles gambiae behavioral responses were evaluated under (i) its responsiveness to take off and undertake sustained upwind flight and (ii) its discriminating capacity between the two olfactometer arms bearing a test odor in either one or both arms. Experiments were conducted in the presence of carbon dioxide pulses as a behavioral sensitizer. Anopheles gambiae clearly discriminated for the olfactometer arm conveying odor generated by incubating any of the three bacteria species with either male or female sweat. Whereas An. gambiae did not discriminate between male and female sterile sweat samples in the olfactometer, the mosquito consistently showed a preference for male sweat over female sweat incubated with the same bacterium, independent of the species used as inoculum. Sweat incubated with C. jeikeium rendered mosquitoes particularly responsive and this substrate elicited the strongest preference for male over female sweat. Tested on their own, neither HMHA nor MSH elicited a clear discriminating response but did affect mosquito responsiveness. These findings serve as a basis for further research on the odor-mediated anthropophilic host-seeking behavior of An. gambiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.