Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be ؊171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F 1 complex, ␣-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be ؊291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H 2 O 2 challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.
Aconitases are iron-sulfur cluster-containing proteins present both in mitochondria and cytosol of cells; the cubane iron-sulfur (Fe-S) cluster in the active site is essential for catalytic activity, but it also renders aconitase highly vulnerable to reactive oxygen and nitrogen species. This study examined the sites and mechanisms of aconitase inactivation by peroxynitrite (ONOO-), a strong oxidant and nitrating agent readily formed from superoxide anion and nitric oxide generated by mitochondria. ONOO- inactivated aconitase in a dose-dependent manner (half-maximal inhibition was observed with approximately 3 microM ONOO-). Low levels of ONOO- caused the conversion of the Fe-S cluster from the [4Fe-4S]2+ form to the inactive [3Fe-4S]1+ form with the loss of labile iron, as confirmed by low-temperature EPR analysis. In the presence of the substrate, citrate, 66-fold higher concentrations of ONOO- were required for half-maximal inhibition. The protective effects of citrate corresponded to its binding to the active site. The inactivation of aconitase in the presence of citrate was due to ONOO--mediated cysteine thiol loss and tyrosine nitration in the enzyme as shown by Western blot analyses. LC/MS/MS analyses revealed that ONOO- treatment to aconitase resulted in nitration of tyrosines 151 and 472 and oxidation to sulfonic acid of cysteines 126 and 385. The latter is one of the three cysteine residues in aconitase that binds to the Fe-S cluster. All other modified tyrosine and cysteine residues were adjacent to the binding site, thus suggesting that these modifications caused conformational changes leading to active-site disruption. Aconitase cysteine thiol modifications other than oxidation to sulfonic acid, such as S-glutathionylation, also decreased aconitase activity, thus indicating that glutathionylation may be an important means of modulating aconitase activity under oxidative and nitrative stress. Taken together, these results demonstrate that the Fe-S cluster in the active site, cysteine 385 bound to the Fe-S cluster, and tyrosine and cysteine residues in the vicinity of the active site are important targets of oxidative and/or nitrative attack, which is selectively controlled by the mitochondrial matrix citrate levels. The mechanisms inherent in aconitase inactivation by ONOO- are discussed in terms of the mitochondrial matrix metabolic and thiol redox state.
Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy -redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P) + /NAD(P)H) and (b) redox-mediated protein posttranslational modifications involved in energy metabolism. The energy-redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.