Quasi-emulsion solvent-diffusion crystallization (QESD) is a type of spherical crystallization which can be used as a particle design method to improve the flowability and micromeritic properties of drugs or excipients. Spherical particles are generated by dispersing a solvent phase in an antisolvent so that a transient emulsion is formed. Within the droplets the material can crystallize and agglomerate into spherical, hollow particles. Surfactants, such as surface-active polymers like hypromellose, are often required to stabilize the quasi-emulsion. To gain further understanding for the role of the stabilizer, a new screening-method was developed which compared different surface active polymers in solution at similar dynamic viscosities rather than at a set concentration. The dynamic viscosities of a low-viscosity grade hypromellose solution used in the previous publications describing the QESD crystallization of metformin hydrochloride by the authors was used as a target value. QESD crystallizations of metformin hydrochloride (MF) and celecoxib showed that the type of stabilizer and whether it is dissolved in the solvent or antisolvent has an effect on the agglomerates. For MF, the type of hypromellose used can have a significant influence on the properties of the agglomerates. More polymers could be used to stabilize the transient emulsion of celecoxib than previously found in literature. Furthermore, QESD crystallizations seem to be more robust when the stabilizer is dissolved in the antisolvent, however this can lead to a reduced drug load of the agglomerates.
Quasi-emulsion solvent diffusion (QESD) crystallizations can improve the micromeritic properties of drugs and excipients. A solution is dispersed in a miscible antisolvent as a transient emulsion. Using this technique, substances that normally crystallize in the form of e.g., needles, agglomerate into spherical, hollow particles. A disadvantage of QESD crystallizations is that the particle size of the agglomerates decreases with an increased solvent fraction of the mother liquor. Therefore, in batch production, many consecutive runs have to be performed, which is a time- and material-intensive process. The aim of this study was to convert a previously used lab-scale batch crystallizer into a mixed-suspension, mixed-product removal (MSMPR) crystallizer, since the batch size could be simply increased by increasing the run time of the system. The mean residence time (MRT) and solvent fraction in the system was predicted and verified using actual measurement curves. The experiments showed that >50 g QESD metformin hydrochloride could be crystallized in a single run, without observing a large shift in the particle size, while maintaining good flowability. Observations regarding the effect of the MRT on the particle size distribution could be verified for the production on a larger scale than previously described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.