Frequency tagging has been widely used to study the role of visual selective attention. Presenting a visual stimulus flickering at a specific frequency generates so-called steady-state visually evoked responses. However, frequency tagging is mostly done at lower frequencies (<30 Hz). This produces a visible flicker, potentially interfering with both perception and neuronal oscillations in the theta, alpha and beta band. To overcome these problems, we used a newly developed projector with a 1440 Hz refresh rate allowing for frequency tagging at higher frequencies. We asked participants to perform a cued spatial attention task in which imperative pictorial stimuli were presented at 63 Hz or 78 Hz while measuring whole-head magnetoencephalography (MEG). We found posterior sensors to show a strong response at the tagged frequency. Importantly, this response was enhanced by spatial attention. Furthermore, we reproduced the typical modulations of alpha band oscillations, i.e., decrease in the alpha power contralateral to the attentional cue. The decrease in alpha power and increase in frequency tagged signal with attention correlated over subjects. We hereby provide proof-of-principle for the use of high-frequency tagging to study sensory processing and neuronal excitability associated with attention.
Previous studies demonstrated that pairing a visual stimulus and electrical micro-stimulation of the ventral tegmental area (VTA-EM) for multiple days is sufficient to induce visual cortical plasticity and changes perception. However, a brief epoch of VTA-EM–stimulus pairing within a single day has been shown to result in a behavioral preference for the paired stimulus. Here, we investigated whether a brief single-day session of VTA-EM–stimulus pairings is sufficient to induce changes in visual cortical responses. We examined macaque posterior inferior temporal (PIT) cortex because previous studies demonstrated response changes after VTA-EM stimulus pairing in that area. Multi-unit recordings in PIT were interleaved with VTA-EM–stimulus pairing epochs. During the short VTA-EM–stimulus pairing epochs (60 pairings), one image (fractal) was paired with VTA-EM (STIM) whereas another, unpaired fractal was presented as control. Two other fractals (dummies) were presented only during the recordings. The difference in response between the STIM and control fractals already increased after the first VTA-EM–stimulus pairing epoch, reflecting a relative increase of the response to the STIM fractal. However, the response to the STIM fractal did not increase further with more VTA-EM–stimulus pairing epochs. The relative increase in firing rate for the paired fractal was present early in the response, in line with a local/ bottom–up origin. These effects were absent when comparing the responses to the dummies pre- and post-VTA-EM. This study shows that pairing a visual image and VTA-EM in a brief single-day session is sufficient to increase the response for the paired image in macaque PIT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.