Accelerating rates of species extinction have prompted a growing number of researchers to manipulate the richness of various groups of organisms and examine how this aspect of diversity impacts ecological processes that control the functioning of ecosystems. We summarize the results of 44 experiments that have manipulated the richness of plants to examine how plant diversity affects the production of biomass. We show that mixtures of species produce an average of 1.7 times more biomass than species monocultures and are more productive than the average monoculture in 79% of all experiments. However, in only 12% of all experiments do diverse polycultures achieve greater biomass than their single most productive species. Previously, a positive net effect of diversity that is no greater than the most productive species has been interpreted as evidence for selection effects, which occur when diversity maximizes the chance that highly productive species will be included in and ultimately dominate the biomass of polycultures. Contrary to this, we show that although productive species do indeed contribute to diversity effects, these contributions are equaled or exceeded by species complementarity, where biomass is augmented by biological processes that involve multiple species. Importantly, both the net effect of diversity and the probability of polycultures being more productive than their most productive species increases through time, because the magnitude of complementarity increases as experiments are run longer. Our results suggest that experiments to date have, if anything, underestimated the impacts of species extinction on the productivity of ecosystems.biodiversity ͉ ecosystem function ͉ extinction ͉ productivity ͉ sampling effect
Over the past decade an increasing number of studies have experimentally manipulated the number of species in a community and examined how this alters the aggregate production of species biomass. Many of these studies have shown that the effects of richness on biomass change through time, but we have limited understanding of the mechanisms that produce these dynamic trends. Here we report the results of an experiment in which we manipulated the richness of freshwater algae in laboratory microcosms. We used two experimental designs (additive and substitutive) that make different assumptions about how patches are initially colonized, and then tracked the development of community biomass from the point of initial colonization through a period of 6-12 generations of the focal species. We found that the effect of initial species richness on biomass production qualitatively shifted twice over the course of the experiment. The first shift occurred as species transitioned from density-independent to dependent phases of population growth. At this time, intraspecific competition caused monocultures to approach their respective carrying capacities more slowly than polycultures. As a consequence, species tended to over-yield for a brief time, generating a positive, but transient effect of diversity on community biomass. The second shift occurred as communities approached carrying capacity. At this time, strong interspecific interactions caused biomass to be dominated by the competitively superior species in polycultures. As this species had the lowest carrying capacity, a negative effect of diversity on biomass resulted in late succession. Although these two shifts produced dynamics that appeared complex, we show that the patterns can be fit to a simple Lotka-Volterra model of competition. Our results suggest that the effects of algal diversity on primary production change in a predictable sequence through successional time.
Summary 1.One of the oldest questions in ecology is how species diversity in any given trophic level is related to the availability of essential resources that limit biomass (e.g. water, nutrients, light or prey). Researchers have tried to understand this relationship by focusing either on how diversity is influenced by the availability of resources, or alternatively, how resource abundance is influenced by species diversity. These contrasting perspectives have led to a seeming paradox '… is species diversity the cause or the consequence of resources that limit community biomass?' 2. Here we present results of an experiment that show it is possible for species diversity and resource density to exhibit reciprocal causal relationships in the same ecological system. Using a guild of ladybeetle predators and their aphid prey, we manipulated the number of predator species in field enclosures to examine how predator diversity impacts prey population size. At the same time, we manipulated the abundance of aphid prey in discrete habitat patches within each enclosure to determine how smaller-scale spatial variation in resource abundance affects the number of co-occurring predator species. 3. We found that the number of ladybeetle species added to enclosures had a significant impact on aphid population dynamics because interference competition among the predators reduced per capita rates of predation and, in turn, the overall efficiency of the predator guild. At the same time, spatial variation in aphid abundance among smaller habitat patches generated variation in the observed richness of ladybeetles because more species occurred in patches where predators aggregated in response to high aphid density. 4. The results of our experiment demonstrate that it is possible for species diversity to simultaneously be a cause and a consequence of resource density in the same ecological system, and they shed light on how this might occur for groups of mobile consumers that exhibit rapid responses to spatial and temporal variation in their prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.