The pipeline of antibiotics has been for decades on an alarmingly low level. Considering the steadily emerging antibiotic resistance, novel tools are needed for early and easy identification of effective anti-infective compounds. In Gram-negative bacteria, the uptake of anti-infectives is especially limited. We here present a surprisingly simple in vitro model of the Gram-negative bacterial envelope, based on 20% (w/v) potato starch gel, printed on polycarbonate 96-well filter membranes. Rapid permeability measurements across this polysaccharide hydrogel allowed to correctly predict either high or low accumulation for all 16 tested anti-infectives in living E. coli. Freeze-fracture TEM supports that the macromolecular network structure of the starch hydrogel may represent a useful surrogate of the Gram-negative bacterial envelope. Machine learning by random forest analysis of in vitro data revealed minimum projection area, molecular mass, and rigidity as the most critical physicochemical parameters for hydrogel permeability, in agreement with reported structural features needed for uptake into Gram-negative bacteria. Correlating our data set of 27 antibiotics from different structural classes to reported MIC values of seven clinically relevant pathogens allowed to distinguish active from non-active compounds based on their low in vitro permeability and in particular to identify poorly permeable antimicrobial candidates before testing them on living bacteria.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.