This paper reports the validation of a three-dimensional numerical simulation of the mixture preparation in a direct-injection hydrogen-fueled engine. Computational results from the commercial code CONVERGE are compared to the experimental data obtained from an optically accessible engine. The geometry used in the simulation is a passenger-car sized, four-stroke, spark-ignited engine. The simulation includes the geometry of the combustion chamber as well as the intake and exhaust ports. The hydrogen is supplied at 100 bar from a centrally located injector with a single-hole nozzle.
The comparison between the simulation and experimental data is made on the central vertical plane. The fuel mole concentration and flow field are compared during the compression stroke at different crank angles. The comparison shows good agreement between the numerical and experimental results during the early stage of the compression stroke. The penetration of the jet and the interaction with the cylinder walls are correctly predicted. The fuel spreading is under predicted which results in differences in flow field and fuel mixture during the injection between experimental and numerical results. At the end of the injection, the fuel distribution shows some disagreement which gradually increases during the rest of the simulation.
This paper reports the validation of a three-dimensional numerical simulation of the mixture preparation in a direct-injection (DI) hydrogen-fueled engine. Computational results from the commercial code CONVERGE are compared to the experimental data obtained from an optically accessible engine. The geometry used in the simulation is a passenger-car sized, four-stroke, and spark-ignited engine. The simulation includes the geometry of the combustion chamber as well as the intake and exhaust ports. The hydrogen is supplied at 100 bar from a centrally located injector with a single-hole nozzle. The comparison between the simulation and experimental data is made on the central vertical plane. The fuel mole concentration and flow field are compared during the compression stroke at different crank angles (CA). The comparison shows good agreement between the numerical and experimental results during the early stage of the compression stroke. The penetration of the jet and the interaction with the cylinder walls are correctly predicted. The fuel spreading is under predicted which results in differences in flow field and fuel mixture during the injection between experimental and numerical results. At the end of the injection, the fuel distribution shows some disagreement which gradually increases during the rest of the simulation.
Shrouds are important for damping vibrations in gas turbine blades. In modern industrial high-output, high-efficiency engines, long turbine blades can require the use of a mid-span or partial-span damping ring. However, the inclusion of a mid-span damping shroud, or “snubber,” can have negative effects on the aerodynamic performance of the gas turbine stage and engine. Therefore, a method of iterative study and optimization was applied to minimize the drag force caused by the snubber, while maximizing the structural life of the blade. The approach used integrated design environment software to perform parametric studies of the design space in preparation for optimization of the blade snubber geometry. The drivers employed in Isight 4.0/4.5 [9] optimization software carried out the parametric study and reported the results to the designer. Considering these results, the designer chose the initial seeding geometry of the optimization driver which greatly reduced analysis time and the time required to reach the design objectives. This approach provides an integrated design workflow and facilitates parametric studies of advanced gas turbine blade component geometry, and the optimization of the component to meet targets of minimized aerodynamic drag force and maximized low-cycle fatigue life, goals crucial to the development of an advanced and efficient power generation gas turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.