The core molecular clockwork in the suprachiasmatic nucleus (SCN) is based on autoregulatory feedback loops of transcriptional activators (CLOCK/NPAS2 and BMAL1) and inhibitors (mPER1-2 and mCRY1-2). To synchronize the phase of the molecular clockwork to the environmental day and night condition, light at dusk and dawn increases mPer expression. However, the signal transduction pathways differ remarkably between the day/night and the night/day transition. Light during early night leads to intracellular Ca 2ϩ release by neuronal ryanodine receptors (RyRs), resulting in phase delays. Light during late night triggers an increase in guanylyl cyclase activity, resulting in phase advances. To date, it is still unknown how the core molecular clockwork regulates the availability of the respective input pathway components. Therefore, we examined light resetting mechanisms in mice with an impaired molecular clockwork (BMAL1 ϩ/ϩ mice. Our findings provide the first evidence that the mammalian molecular clockwork influences Ryr expression and thus controls its own photic input pathway components.
Intrinsically photosensitive retinal ganglion cell (ipRGC) types can be distinguished by their dendritic tree stratification and intensity of melanopsin staining. We identified heavily stained melanopsin-positive M1 cells branching in the outermost part of the inner plexiform layer (IPL) and weakly melanopsin-positive M2 cells branching in the innermost layer of the IPL. A third type can be distinguished by the displacement of the soma to the inner nuclear layer and has morphological similarities with either M1 cells or M2 cells, and is termed here displaced or M-d cells. The aim of the present study was to examine the phenotypic traits of ipRGC types. Using whole retinae from adult mice, we performed immunohistochemistry using melanopsin immunostaining and a number of antibodies directed against proteins typically expressed in retinal ganglion cells. The majority of M1 and M2 ipRGCs expressed Isl-1, microtubule associated protein-2 (MAP2), γ-synuclein, and NeuN, whereas Brn3 transcription factor and the different neurofilaments (NF68, NF160, NF200) were able to discriminate between ipRGC subtypes. Brn3 was expressed preferentially in M2 cells and in a small subpopulation of weakly melanopsin-positive M-d cells with similarities to M2 cells. All three neurofilaments were primarily expressed in large M2 cells with similarities to the recently described alpha-like M4 cells, but not in M1 cells. Expression of NF68 and NF160 was also observed in a few large M-d ipRGCs. These findings show that ipRGCs are not a phenotypically homogenous population and that specific neuronal markers (Brn3 and neurofilament) can partly distinguish between different ipRGC subtypes.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) represent a new class of photoreceptors which support a variety of non-image forming physiological functions, such as circadian photoentrainment, pupillary light reflex and masking responses to light. In view of the recently proposed role of retinal inputs for the regulation of diurnal and nocturnal behavior, we performed the first deep analysis of the ipRGC system in a diurnal rodent model, Arvicanthis ansorgei , and compared the anatomical and physiological properties of ipRGCs with those of nocturnal mice. Based on somata location, stratification pattern and melanopsin expression, we identified two main ipRGC types in the retina of Arvicanthis : M1, constituting 74% of all ipRGCs and non-M1 (consisting mainly of the M2 type) constituting the following 25%. The displaced ipRGCs were rarely encountered. Phenotypical staining patterns of ganglion cell markers showed a preferential expression of Brn3 and neurofilaments in non-M1 ipRGCs. In general, the anatomical properties and molecular phenotyping of ipRGCs in Arvicanthis resemble ipRGCs of the mouse retina, however the percentage of M1 cells is considerably higher in the diurnal animal. Multi-electrode array recordings (MEA) identified in newborn retinas of Arvicanthis three response types of ipRGCs (type I, II and III) which are distinguished by their light sensitivity, response strength, latency and duration. Type I ipRGCs exhibited a high sensitivity to short light flashes and showed, contrary to mouse type I ipRGCs, robust light responses to 10 ms flashes. The morphological, molecular and physiological analysis reveals very few differences between mouse and Arvicanthis ipRGCs. These data imply that the influence of retinal inputs in defining the temporal niche could be related to a stronger cone input into ipRGCs in the cone-rich Arvicanthis retina, and to the higher sensitivity of type I ipRGCs and elevated proportion of M1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.