We describe a microfluidic genetic analysis system that represents a previously undescribed integrated microfluidic device capable of accepting whole blood as a crude biological sample with the endpoint generation of a genetic profile. Upon loading the sample, the glass microfluidic genetic analysis system device carries out on-chip DNA purification and PCR-based amplification, followed by separation and detection in a manner that allows for microliter samples to be screened for infectious pathogens with sample-inanswer-out results in <30 min. A single syringe pump delivers sample/reagents to the chip for nucleic acid purification from a biological sample. Elastomeric membrane valving isolates each distinct functional region of the device and, together with resistive flow, directs purified DNA and PCR reagents from the extraction domain into a 550-nl chamber for rapid target sequence PCR amplification. Repeated pressure-based injections of nanoliter aliquots of amplicon (along with the DNA sizing standard) allow electrophoretic separation and detection to provide DNA fragment size information. The presence of Bacillus anthracis (anthrax) in 750 nl of whole blood from living asymptomatic infected mice and of Bordetella pertussis in 1 l of nasal aspirate from a patient suspected of having whooping cough are confirmed by the resultant genetic profile.full integration ͉ micro total analysis system ͉ microdevice ͉ pumping ͉ valving T he next revolution in personalized medicine, forensic science, and biowarfare defense will be impelled by analysis systems that provide a quantum leap in terms of functionality, time to result, and cost effectiveness. These systems need to meet several requirements, including a design conducive with low-cost manufacturing, turn-key operation with fast analysis times, and the ability to manipulate small volumes from crude samples. One example is the micrototal analysis system (-TAS) described conceptually more than a decade ago by Manz et al. (1). Prophetically, they stated that, ''. . . the detector or sensor in a TAS does not need high selectivity, because the sample pretreatment serves to eliminate most of the interfering chemical compounds.'' There are multiple examples in the literature of steps taken toward the advancement of integrated microfluidic genetic analysis (MGA) systems (refs. 2-4; also see ref. 5 for a comprehensive review); however, after a decade and a half, no bona fide microfluidic device has been presented that is capable of nanoliter flow control and integration of an electrophoretic separation with comprehensive sample pretreatment (DNA purification and PCR amplification).The MGA system described in this report brings together many advances in microfluidics over the last decade, exploiting differential channel flow resistances (6), elastomeric valves (7, 8), laminar flow (9), and electrophoretic mobility within the device, in concert with external fluid flow control from a syringe pump for sample and reagent delivery. Nucleic acid purification through solid-phase e...
A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol-gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (microchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the microchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.
A novel DNA solid-phase extraction protocol based on the pH-dependent charge of chitosan was developed specifically for low-volume DNA extraction on microchips. The method uses chitosan-coated beads to extract DNA at pH 5 and release it from the chitosan at pH 9. DNA extraction efficiency as high as 92% could be attained, even from complex samples such as human blood containing significant amounts of protein. Using this method, PCR inhibitors that are typically used in DNA extraction procedures (e.g., chaotropic salts, 2-propanol) can be avoided, making the method more conducive to downstream sample processing using PCR. A high-density multichannel microchip device was then fabricated and the microchannels coated with chitosan for DNA extraction in an open channel configuration without the need for an additional stationary phase. This design provided a relatively high surface area-to-volume ratio for extraction, while retaining the low flow resistance commensurate with open channels. With a flow rate of approximately 1 microL/min during the extraction, the total extraction time was less than 10 min, with most of the DNA recovered in the first 2 microL of elution buffer. Using the microchip device, extraction efficiencies for lambda-phage DNA and human genomic DNA were as high as 67 and 63%, respectively. Human genomic DNA from whole blood samples could be extracted in 10 min with an extraction efficiency of 75 +/- 4% (n = 3), and the purified DNA was suitable for PCR amplification of a fragment of the gelsolin gene. The combination of an entirely aqueous DNA extraction method with a high-density, low-flow resistance microchannel pattern sets the stage for future integration into microfluidic genomic analysis devices.
A silica-based solid-phase extraction system suitable for incorporation into a microchip platform (nu-total analytical system; nu-TAS) would find utility in a variety of genetic analysis protocols, including DNA sequencing. The extraction procedure utilized is based on adsorption of the DNA onto bare silica. The procedure involves three steps: (i) DNA adsorption in the presence of a chaotropic salt, (ii) removal of contaminants with an alcohol/water solution, and (iii) elution of the adsorbed DNA in a small volume of buffer suitable for polymerase chain reaction (PCR) amplification. Multiple approaches for incorporation of this protocol into a microchip were examined with regard to extraction efficiency, reproducibility, stability, and the potential to provide PCR-amplifiable DNA. These included packing microchannels with silica beads only, generating a continuous silica network via sol-gel chemistry, and combinations of these. The optimal approach was found to involve immobilizing silica beads packed into the channel using a sol-gel network. This method allowed for successful extraction and elution of nanogram quantities of DNA in less than 25 min, with the DNA obtained in the elution buffer fraction. Evaluation of the eluted DNA indicated that it was of suitable quality for subsequent amplification by PCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.