SUMMARYA stabilized, nodally integrated linear tetrahedral is formulated and analysed. It is well known that linear tetrahedral elements perform poorly in problems with plasticity, nearly incompressible materials, and acute bending. For a variety of reasons, low-order tetrahedral elements are preferable to quadratic tetrahedral elements; particularly for nonlinear problems. But the severe locking problems of tetrahedrals have forced analysts to employ hexahedral formulations for most nonlinear problems. On the other hand, automatic mesh generation is often not feasible for building many 3D hexahedral meshes. A stabilized, nodally integrated linear tetrahedral is developed and shown to perform very well in problems with plasticity, nearly incompressible materials and acute bending. The formulation is analytically and numerically shown to be stable and optimally convergent for the compressible case provided sufficient smoothness of the exact solution u ∈ C 2 ∩ (H 1 ) 3 . Future work may extend the formulation to the incompressible regime and relax the regularity requirements; nonetheless, the results demonstrate that the method is not susceptible to locking and performs quite well in several standard linear and nonlinear benchmarks. Published in
SUMMARYThis article advocates a new methodology for the finite element solution of contact problems involving bodies that may undergo finite motions and deformations. The analysis is based on a decomposition of the two-body contact problem into two simultaneous sub-problems, and results naturally in geometrically unbiased discretization of the contacting surfaces. A proposed two-dimensional contact element is specifically designed to unconditionally allow for exact transmission of constant normal traction through interacting surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.