In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.
Despite the progress achieved in elucidating the ecological mechanisms of adaptive radiation, there has been little focus on documenting the extent of adaptive differentiation in physiological functions during this process. Moreover, a thorough understanding of the genomic basis underlying phenotypic adaptive divergence is still in its infancy. One important evolutionary process for which causal genetic mechanisms are largely unknown pertains to life-history trade-offs. We analysed patterns of gene transcription in liver tissue of sympatric dwarf and normal whitefish from two natural lakes, as well as from populations reared in controlled environments, using a 16,006-gene cDNA microarray in order to: (i) document the extent of physiological adaptive divergence between sympatric dwarf and normal species pairs, and (ii) explore the molecular mechanisms of differential life history trade-offs between growth and survival potentially involved in their adaptive divergence. In the two natural lakes, 6.45% of significantly transcribed genes showed regulation either in parallel fashion (2.39%) or in different directions (4.06%). Among genes showing parallelism in regulation patterns, we observed a higher proportion of over-expressed genes in dwarf relative to normal whitefish (70.6%). Patterns observed in controlled conditions were also generally congruent with those observed in natural populations. Dwarf whitefish consistently showed significant over-expression of genes potentially associated with survival through enhanced activity (energy metabolism, iron homeostasis, lipid metabolism, detoxification), whereas more genes associated with growth (protein synthesis, cell cycle, cell growth) were generally down-regulated in dwarf relative to normal whitefish. Overall, parallelism in patterns of gene transcription, as well as patterns of interindividual variation across controlled and natural environments, provide strong indirect evidence for the role of selection in the evolution of differential regulation of genes involving a vast array of potentially adaptive physiological processes between dwarf and normal whitefish. Our results also provide a first mechanistic, genomic basis for the observed trade-off in life-history traits distinguishing dwarf and normal whitefish species pairs, wherein enhanced survival via more active swimming, necessary for increased foraging and predator avoidance, engages energetic costs that translate into slower growth rate and reduced fecundity in dwarf relative to normal whitefish.
We used microarrays and a previously established linkage map to localize the genetic determinants of brain gene expression for a backcross family of lake whitefish species pairs (Coregonus sp.). Our goals were to elucidate the genomic distribution and sex specificity of brain expression QTL (eQTL) and to determine the extent to which genes controlling transcriptional variation may underlie adaptive divergence in the recently evolved dwarf (limnetic) and normal (benthic) whitefish. We observed a sex bias in transcriptional genetic architecture, with more eQTL observed in males, as well as divergence in genome location of eQTL between the sexes. Hotspots of nonrandom aggregations of up to 32 eQTL in one location were observed. We identified candidate genes for species pair divergence involved with energetic metabolism, protein synthesis, and neural development on the basis of colocalization of eQTL for these genes with eight previously identified adaptive phenotypic QTL and four previously identified outlier loci from a genome scan in natural populations. Eighty-eight percent of eQTL-phenotypic QTL colocalization involved growth rate and condition factor QTL, two traits central to adaptive divergence between whitefish species pairs. Hotspots colocalized with phenotypic QTL in several cases, revealing possible locations where master regulatory genes, such as a zinc-finger protein in one case, control gene expression directly related to adaptive phenotypic divergence. We observed little evidence of colocalization of brain eQTL with behavioral QTL, which provides insight into the genes identified by behavioral QTL studies. These results extend to the transcriptome level previous work illustrating that selection has shaped recent parallel divergence between dwarf and normal lake whitefish species pairs and that metabolic, more than morphological, differences appear to play a key role in this divergence.
A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high-throughput transcriptomic technologies. Functional analysis of coexpressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. Here, we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of coexpressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, that is, hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of coexpressed genes involved in phenotypic divergence and their key drivers, and further identified a module part specifically rewired in the backcross progeny. Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to bone morphogenetic protein and calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish.
Gene expression divergence is one of the mechanisms thought to be involved in the emergence of incipient species. Next-generation sequencing has become an extremely valuable tool for the study of this process by allowing whole transcriptome sequencing, or RNA-Seq. We have conducted a 454 GS-FLX pyrosequencing experiment to refine our understanding of adaptive divergence between dwarf and normal lake whitefish species (Coregonus clupeaformis spp.). The objectives were to: (i) investigate transcriptomic divergence as measured by liver RNA-Seq; (ii) test the correlation between divergence in expression and sequence polymorphism; and (iii) investigate the extent of allelic imbalance. We also compared the results of RNA-seq with those of a previous microarray study performed on the same fish. Following de novo assembly, results showed that normal whitefish overexpressed more contigs associated with protein synthesis while dwarf fish overexpressed more contigs related to energy metabolism, immunity and DNA replication and repair. Moreover, 63 SNPs showed significant allelic imbalance, and this phenomenon prevailed in the recently diverged dwarf whitefish. Results also showed an absence of correlation between gene expression divergence as measured by RNA-Seq and either polymorphism rate or sequence divergence between normal and dwarf whitefish. This study reiterates an important role for gene expression divergence, and provides evidence for allele-specific expression divergence as well as evolutionary decoupling of regulatory and coding sequences in the adaptive divergence of normal and dwarf whitefish. It also demonstrates how next-generation sequencing can lead to a more comprehensive understanding of transcriptomic divergence in a young species pair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.