Photo-generated high-energy surface states can help to produce chlorine in aqueous environments. Here, aligned rutile (TiO2) nanocrystal arrays are grown onto fluorine-doped tin oxide (FTO) substrates and activated either by hydrothermal Sr/Ba surface doping and/or by vacuum-annealing. With vacuum-annealing, highly photoactive films are obtained with photocurrents of typically 8 mA cm−2 at 1.0 V vs. SCE in 1 M KCl (LED illumination with λ = 385 nm and approx. 100 mW cm−2). Photoelectrochemical chlorine production is demonstrated at proof-of-concept scale in 4 M NaCl and suggested to be linked mainly to the production of Ti(III) surface species by vacuum-annealing, as detected by post-catalysis XPS, rather than to Sr/Ba doping at the rutile surface. The vacuum-annealing treatment is proposed to beneficially affect (i) bulk semiconductor TiO2 nanocrystal properties and electron harvesting, (ii) surface TiO2 reactivity towards chloride adsorption and oxidation, and (iii) FTO substrate performance.
Here we report the development of a new scalable and transferable plasma assisted atomic layer deposition (PEALD) process for the production of uniform, conformal and pin hole free, NiO with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.